Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany; Munich Center of Quantum Science and Technology (MCQST), Schellingstr. 4, 80779 München, Germany.
Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany; Munich Center of Quantum Science and Technology (MCQST), Schellingstr. 4, 80779 München, Germany.
Curr Opin Biotechnol. 2023 Oct;83:102975. doi: 10.1016/j.copbio.2023.102975. Epub 2023 Aug 11.
Single-cell analysis can unravel functional heterogeneity within cell populations otherwise obscured by ensemble measurements. However, noninvasive techniques that probe chemical entities and their dynamics are still lacking. This challenge could be overcome by novel sensors based on nitrogen-vacancy (NV) centers in diamond, which enable nuclear magnetic resonance (NMR) spectroscopy on unprecedented sample volumes. In this perspective, we briefly introduce NV-based quantum sensing and review the progress made in microscale NV-NMR spectroscopy. Last, we discuss approaches to enhance the sensitivity of NV ensemble magnetometers to detect biologically relevant concentrations and provide a roadmap toward their application in single-cell analysis.
单细胞分析可以揭示细胞群体中原本被整体测量所掩盖的功能异质性。然而,目前仍缺乏探测化学实体及其动态的非侵入性技术。基于钻石中的氮空位(NV)中心的新型传感器可以克服这一挑战,从而实现前所未有的样本量的核磁共振(NMR)光谱。在这篇观点文章中,我们简要介绍了基于 NV 的量子传感,并回顾了微尺度 NV-NMR 光谱学方面的进展。最后,我们讨论了提高 NV 集合磁力计检测生物相关浓度灵敏度的方法,并为其在单细胞分析中的应用提供了路线图。