Salin Raj P, Nair Anupama, Preetha Rani M R, Rajankutty K, Ranjith S, Raghu K G
Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India.
Jubilee Centre for Medical Research (JCMR), Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India.
Int J Cardiol. 2023 Feb 1;372:101-109. doi: 10.1016/j.ijcard.2022.12.003. Epub 2022 Dec 5.
Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes with no known biomarkers for early detection. Mitochondria-associated endoplasmic reticulum membranes (MAM) are less studied subcellular targets but an emerging area for exploration in metabolic disorders including DCM. We herein studied the role of MAMs and downstream mitochondrial functions in DCM. We also explored the efficacy of ferulic acid (FeA) against DCM via modulation of MAM and its associated signaling pathway.
The H9c2 cardiomyoblast cells were incubated with high concentration (33 mM) of d-glucose for 48 h to create a high glucose ambience in vitro. The expression of various critical proteins of MAM, mitochondrial function, oxidative phosphorylation (OxPhos) and the genesis of apoptosis were examined. The rats fed with high fat/high fructose/streptozotocin (single dose, i.p.) were used as a diabetic model and analyzed the insulin resistance and markers of cardiac hypertrophy and apoptosis.
High glucose conditions caused the upregulation of MAM formation via PACS2, IP3R2, FUNDC1, and VDAC1 and decreased mitochondrial biogenesis, fusion and OxPhos. The upregulation of mitochondria-driven SMAC-HTRA2-ARTS-XIAP apoptosis and other cell death pathways indicate their critical roles in the genesis of DCM at the molecular level. The diabetic rats also showed cardiomyopathy with increased heart mass index, TNNI3K, troponin, etc. FeA effectively prevented the high glucose-induced MAM alterations and associated cellular anomalies both in vitro and in vivo.
High glucose-induced MAM distortion and subsequent mitochondrial dysfunctions act as the stem of cardiomyopathy. MAM could be explored as a potential target to treat diabetic cardiomyopathy. Also, the FeA could be an attractive nutraceutical agent for diabetic cardiomyopathy.
糖尿病性心肌病(DCM)是糖尿病的严重并发症之一,目前尚无用于早期检测的生物标志物。线粒体相关内质网膜(MAM)是研究较少的亚细胞靶点,但在包括DCM在内的代谢紊乱中是一个新兴的探索领域。我们在此研究了MAM及其下游线粒体功能在DCM中的作用。我们还探讨了阿魏酸(FeA)通过调节MAM及其相关信号通路对DCM的疗效。
将H9c2心肌母细胞与高浓度(33 mM)的d-葡萄糖孵育48小时,以在体外营造高糖环境。检测MAM的各种关键蛋白的表达、线粒体功能、氧化磷酸化(OxPhos)和细胞凋亡的发生情况。将喂食高脂肪/高果糖/链脲佐菌素(单次腹腔注射)的大鼠用作糖尿病模型,分析胰岛素抵抗以及心脏肥大和细胞凋亡的标志物。
高糖条件通过PACS2、IP3R2、FUNDC1和VDAC1导致MAM形成上调,并降低线粒体生物发生、融合和OxPhos。线粒体驱动的SMAC-HTRA2-ARTS-XIAP细胞凋亡和其他细胞死亡途径的上调表明它们在DCM发生的分子水平上起关键作用。糖尿病大鼠还表现出心肌病,心脏质量指数、TNNI3K、肌钙蛋白等增加。FeA在体外和体内均有效预防了高糖诱导的MAM改变和相关的细胞异常。
高糖诱导的MAM畸变和随后的线粒体功能障碍是心肌病的根源。MAM可作为治疗糖尿病性心肌病的潜在靶点进行探索。此外,FeA可能是一种有吸引力的用于糖尿病性心肌病的营养保健品。