Laboratoire CarMeN-Équipe 5 Cardioprotection, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, U1060 CARMEN, Equipe 5- Cardioprotection, Groupement Hospitalier Est, Bâtiment B13, 59 boulevard Pinel, 69500, Bron, France.
Laboratory of Experimental and Clinical Pharmacology, Faculty of Sciences, Lebanese University-Beirut, Beirut, Lebanon.
Basic Res Cardiol. 2020 Nov 30;115(6):74. doi: 10.1007/s00395-020-00835-7.
Type 2 diabetic cardiomyopathy features Ca signaling abnormalities, notably an altered mitochondrial Ca handling. We here aimed to study if it might be due to a dysregulation of either the whole Ca homeostasis, the reticulum-mitochondrial Ca coupling, and/or the mitochondrial Ca entry through the uniporter. Following a 16-week high-fat high-sucrose diet (HFHSD), mice developed cardiac insulin resistance, fibrosis, hypertrophy, lipid accumulation, and diastolic dysfunction when compared to standard diet. Ultrastructural and proteomic analyses of cardiac reticulum-mitochondria interface revealed tighter interactions not compatible with Ca transport in HFHSD cardiomyocytes. Intramyocardial adenoviral injections of Ca sensors were performed to measure Ca fluxes in freshly isolated adult cardiomyocytes and to analyze the direct effects of in vivo type 2 diabetes on cardiomyocyte function. HFHSD resulted in a decreased IP3R-VDAC interaction and a reduced IP3-stimulated Ca transfer to mitochondria, with no changes in reticular Ca level, cytosolic Ca transients, and mitochondrial Ca uniporter function. Disruption of organelle Ca exchange was associated with decreased mitochondrial bioenergetics and reduced cell contraction, which was rescued by an adenovirus-mediated expression of a reticulum-mitochondria linker. An 8-week diet reversal was able to restore cardiac insulin signaling, Ca transfer, and cardiac function in HFHSD mice. Therefore, our study demonstrates that the reticulum-mitochondria Ca miscoupling may play an early and reversible role in the development of diabetic cardiomyopathy by disrupting primarily the mitochondrial bioenergetics. A diet reversal, by counteracting the MAM-induced mitochondrial Ca dysfunction, might contribute to restore normal cardiac function and prevent the exacerbation of diabetic cardiomyopathy.
2 型糖尿病性心肌病的特征是 Ca 信号异常,尤其是线粒体 Ca 处理异常。我们旨在研究这是否可能是由于整个 Ca 稳态、肌浆网-线粒体 Ca 偶联和/或通过单向转运体的线粒体 Ca 内流的调节失常所致。在高脂肪高蔗糖饮食(HFHSD)16 周后,与标准饮食相比,小鼠出现心脏胰岛素抵抗、纤维化、肥大、脂质堆积和舒张功能障碍。心脏肌浆网-线粒体界面的超微结构和蛋白质组学分析显示,HFHSD 心肌细胞中紧密的相互作用与 Ca 转运不兼容。心肌内腺病毒注射钙传感器用于测量新鲜分离的成年心肌细胞中的 Ca 通量,并分析 2 型糖尿病对心肌细胞功能的直接影响。HFHSD 导致 IP3R-VDAC 相互作用减少和 IP3 刺激的 Ca 向线粒体转移减少,而网状 Ca 水平、胞质 Ca 瞬变和线粒体 Ca 单向转运体功能没有变化。细胞器 Ca 交换的破坏与线粒体生物能的降低和细胞收缩的减少有关,而通过腺病毒介导的内质网-线粒体连接蛋白的表达可以挽救这种情况。8 周的饮食逆转能够恢复 HFHSD 小鼠的心脏胰岛素信号、Ca 转移和心脏功能。因此,我们的研究表明,肌浆网-线粒体 Ca 偶联失调可能通过首先破坏线粒体生物能在糖尿病性心肌病的发展中发挥早期和可逆的作用。通过抵消 MAM 诱导的线粒体 Ca 功能障碍的饮食逆转可能有助于恢复正常的心脏功能并防止糖尿病性心肌病的恶化。
Biochim Biophys Acta Mol Basis Dis. 2021-1-1
Am J Physiol Heart Circ Physiol. 2021-10-1
Am J Physiol Cell Physiol. 2025-8-1
Cardiovasc Diabetol. 2025-7-10
J Mol Cell Cardiol Plus. 2025-6-10
Nat Rev Cardiol. 2025-6-22
J Mol Cell Cardiol Plus. 2025-5-10
Cell Calcium. 2020-12
Bioinformatics. 2020-5-1
Int J Mol Sci. 2019-7-2
Int J Mol Sci. 2019-6-11