Suppr超能文献

血红素依赖性诱导的鼠红细胞分化过程中的线粒体自噬程序。

Heme-dependent induction of mitophagy program during differentiation of murine erythroid cells.

机构信息

Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi, Sendai, Japan.

Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi, Sendai, Japan; Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Seiryo-machi, Sendai, Japan.

出版信息

Exp Hematol. 2023 Feb;118:21-30. doi: 10.1016/j.exphem.2022.11.007. Epub 2022 Dec 5.

Abstract

Although establishment and maintenance of mitochondria are essential for the production of massive amounts of heme in erythroblasts, mitochondria must be degraded upon terminal differentiation to red blood cells (RBCs), thus creating a biphasic regulatory process. Previously, we reported that iron deficiency in mice promotes mitochondrial retention in RBCs, suggesting that a proper amount of iron and/or heme is necessary for the degradation of mitochondria during erythroblast maturation. Because the transcription factor GATA1 regulates autophagy in erythroid cells, which involves mitochondrial clearance (mitophagy), we investigated the relationship between iron or heme and mitophagy by analyzing the expression of genes related to GATA1 and autophagy and the impact of iron or heme restriction on the amount of mitochondria. We found that heme promotes the expression of GATA1-regulated mitophagy-related genes and the induction of mitophagy. GATA1 might induce the expression of the autophagy-related genes Atg4d and Stk11 for mitophagy through a heme-dependent mechanism in murine erythroleukemia (MEL) cells and a genetic rescue system with G1E-ER-GATA1 erythroblast cells derived from Gata1-null murine embryonic stem cells. These results provide evidence for a biphasic mechanism in which mitochondria are essential for heme generation, and the heme generated during differentiation promotes mitophagy and mitochondrial disposal. This mechanism provides a molecular framework for understanding this fundamentally important cell biological process.

摘要

尽管线粒体的建立和维持对于红细胞中大量血红素的产生是必不可少的,但在线粒体成熟为红细胞(RBC)的过程中必须降解线粒体,从而产生一个两相调节过程。以前,我们报道了铁缺乏症在小鼠中促进了 RBC 中线粒体的保留,这表明在红细胞成熟过程中,适当的铁和/或血红素对于线粒体的降解是必要的。由于转录因子 GATA1 调节红细胞中的自噬,其中涉及线粒体清除(自噬),我们通过分析与 GATA1 和自噬相关的基因的表达以及铁或血红素限制对线粒体数量的影响来研究铁或血红素与自噬的关系。我们发现血红素促进 GATA1 调节的与自噬相关的基因的表达和自噬的诱导。在鼠红白血病(MEL)细胞和源自 Gata1 缺失的鼠胚胎干细胞的 G1E-ER-GATA1 红细胞细胞的遗传挽救系统中,GATA1 可能通过血红素依赖的机制诱导自噬相关基因 Atg4d 和 Stk11 的表达,用于自噬。这些结果为线粒体对于血红素生成是必不可少的,并且分化过程中产生的血红素促进自噬和线粒体处置的两相机制提供了证据。这种机制为理解这个基本重要的细胞生物学过程提供了一个分子框架。

相似文献

1
Heme-dependent induction of mitophagy program during differentiation of murine erythroid cells.
Exp Hematol. 2023 Feb;118:21-30. doi: 10.1016/j.exphem.2022.11.007. Epub 2022 Dec 5.
4
Iron-heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency.
Haematologica. 2017 Mar;102(3):454-465. doi: 10.3324/haematol.2016.151043. Epub 2016 Dec 7.
7
Thioredoxin-interacting protein regulates the differentiation of murine erythroid precursors.
Exp Hematol. 2015 May;43(5):393-403.e2. doi: 10.1016/j.exphem.2015.01.003. Epub 2015 Jan 16.
9
Single-cell analyses demonstrate that a heme-GATA1 feedback loop regulates red cell differentiation.
Blood. 2019 Jan 31;133(5):457-469. doi: 10.1182/blood-2018-05-850412. Epub 2018 Dec 10.
10
Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1.
Blood. 2019 Mar 21;133(12):1358-1370. doi: 10.1182/blood-2018-09-875674. Epub 2019 Jan 30.

引用本文的文献

2
Mitochondrial regulation of erythropoiesis in homeostasis and disease.
Br J Haematol. 2024 Aug;205(2):429-439. doi: 10.1111/bjh.19600. Epub 2024 Jun 30.
3
Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes.
Exp Hematol. 2024 Sep;137:104252. doi: 10.1016/j.exphem.2024.104252. Epub 2024 Jun 12.

本文引用的文献

1
Trained innate immunity, long-lasting epigenetic modulation, and skewed myelopoiesis by heme.
Proc Natl Acad Sci U S A. 2021 Oct 19;118(42). doi: 10.1073/pnas.2102698118.
2
Deficient mitophagy pathways in sickle cell disease.
Br J Haematol. 2021 Jun;193(5):988-993. doi: 10.1111/bjh.17416. Epub 2021 Mar 22.
3
Human erythroid differentiation requires VDAC1-mediated mitochondrial clearance.
Haematologica. 2022 Jan 1;107(1):167-177. doi: 10.3324/haematol.2020.257121.
4
Induction of STK11-dependent cytoprotective autophagy in breast cancer cells upon honokiol treatment.
Cell Death Discov. 2020 Sep 6;6:81. doi: 10.1038/s41420-020-00315-w. eCollection 2020.
5
Discovering How Heme Controls Genome Function Through Heme-omics.
Cell Rep. 2020 Jun 30;31(13):107832. doi: 10.1016/j.celrep.2020.107832.
6
Sphingosine-1-phosphate signaling modulates terminal erythroid differentiation through the regulation of mitophagy.
Exp Hematol. 2019 Apr;72:47-59.e1. doi: 10.1016/j.exphem.2019.01.004. Epub 2019 Jan 16.
7
Single-cell analyses demonstrate that a heme-GATA1 feedback loop regulates red cell differentiation.
Blood. 2019 Jan 31;133(5):457-469. doi: 10.1182/blood-2018-05-850412. Epub 2018 Dec 10.
8
Infection perturbs Bach2- and Bach1-dependent erythroid lineage 'choice' to cause anemia.
Nat Immunol. 2018 Oct;19(10):1059-1070. doi: 10.1038/s41590-018-0202-3. Epub 2018 Sep 24.
9
GATA/Heme Multi-omics Reveals a Trace Metal-Dependent Cellular Differentiation Mechanism.
Dev Cell. 2018 Sep 10;46(5):581-594.e4. doi: 10.1016/j.devcel.2018.07.022. Epub 2018 Aug 16.
10
The Encyclopedia of DNA elements (ENCODE): data portal update.
Nucleic Acids Res. 2018 Jan 4;46(D1):D794-D801. doi: 10.1093/nar/gkx1081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验