Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
BMC Microbiol. 2022 Dec 9;22(1):294. doi: 10.1186/s12866-022-02689-6.
Bisphenol A (BPA) is a rapid spreading organic pollutant that widely used in many industries especially as a plasticizer in polycarbonate plastic and epoxy resins. BPA reported as a prominent endocrine disruptor compound that possesses estrogenic activity and fulminant toxicity. Pseudomonas putida YC-AE1 was isolated in our previous study and exerted a strong degradation capacity toward BPA at high concentrations; however, the molecular degradation mechanism is still enigmatic.
We employed RNA sequencing to analyze the differentially expressed genes (DEGs) in the YC-AE1 strain upon BPA induction. Out of 1229 differentially expressed genes, 725 genes were positively regulated, and 504 genes were down-regulated. The pathways of microbial metabolism in diverse environments were significantly enriched among DEGs based on KEGG enrichment analysis. qRT-PCR confirm the involvement of BPA degradation relevant genes in accordance with RNA Seq data. The degradation pathway of BPA in YC-AE1 was proposed with specific enzymes and encoded genes. The role of cytochrome P450 (CYP450) in BPA degradation was further verified. Sever decrease in BPA degradation was recorded by YC-AE1 in the presence of CYP450 inhibitor. Subsequently, CYP450bisdB deficient YC-AE1 strain △ bisdB lost its ability toward BPA transformation comparing with the wild type. Furthermore, Transformation of E. coli with pET-32a-bisdAB empowers it to degrade 66 mg l of BPA after 24 h. Altogether, the results showed the role of CYP450 in biodegradation of BPA by YC-AE1.
In this study we propose the molecular basis and the potential role of YC-AE1cytochrome P450 monooxygenase in BPA catabolism.
双酚 A(BPA)是一种迅速扩散的有机污染物,广泛应用于许多行业,特别是作为聚碳酸酯塑料和环氧树脂中的增塑剂。BPA 被报道为一种突出的内分泌干扰化合物,具有雌激素活性和剧烈毒性。在我们之前的研究中,恶臭假单胞菌 YC-AE1 被分离出来,对高浓度的 BPA 具有很强的降解能力;然而,其分子降解机制仍然是个谜。
我们采用 RNA 测序分析了 YC-AE1 菌株在 BPA 诱导下的差异表达基因(DEGs)。在 1229 个差异表达基因中,725 个基因被正调控,504 个基因被下调。KEGG 富集分析表明,微生物代谢途径在 DEGs 中显著富集。qRT-PCR 验证了与 RNA Seq 数据一致的 BPA 降解相关基因的参与。提出了 YC-AE1 中 BPA 的降解途径,包括特定的酶和编码基因。进一步验证了细胞色素 P450(CYP450)在 BPA 降解中的作用。在存在 CYP450 抑制剂的情况下,YC-AE1 对 BPA 降解的能力显著下降。随后,与野生型相比,CYP450bisdB 缺陷型 YC-AE1 菌株△bisdB 丧失了转化 BPA 的能力。此外,将 pET-32a-bisdAB 转化到大肠杆菌中,使其在 24 小时后能够降解 66mg/L 的 BPA。总之,这些结果表明 CYP450 在 YC-AE1 降解 BPA 中的作用。
本研究提出了 YC-AE1 细胞色素 P450 单加氧酶在 BPA 代谢中的分子基础和潜在作用。