Suppr超能文献

有机光电二极管中超低暗电流起源的识别

Identification of the Origin of Ultralow Dark Currents in Organic Photodiodes.

作者信息

Ma Xiao, Bin Haijun, van Gorkom Bas T, van der Pol Tom P A, Dyson Matthew J, Weijtens Christ H L, Fattori Marco, Meskers Stefan C J, van Breemen Albert J J M, Tordera Daniel, Janssen René A J, Gelinck Gerwin H

机构信息

Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands.

Integrated Circuits, Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands.

出版信息

Adv Mater. 2023 Feb;35(8):e2209598. doi: 10.1002/adma.202209598. Epub 2022 Dec 21.

Abstract

Organic bulk heterojunction photodiodes (OPDs) attract attention for sensing and imaging. Their detectivity is typically limited by a substantial reverse bias dark current density (J ). Recently, using thermal admittance or spectral photocurrent measurements, J has been attributed to thermal charge generation mediated by mid-gap states. Here, the temperature dependence of J in state-of-the-art OPDs is reported with J down to 10  mA cm at -0.5 V bias. For a variety of donor-acceptor bulk-heterojunction blends it is found that the thermal activation energy of J is lower than the effective bandgap of the blends, by ca. 0.3 to 0.5 eV, but higher than expected for mid-gap states. Ultra-sensitive sub-bandgap photocurrent spectroscopy reveals that the minimum photon energy for optical charge generation in OPDs correlates with the dark current thermal activation energy. The dark current in OPDs is attributed to thermal charge generation at the donor-acceptor interface mediated by intra-gap states near the band edges.

摘要

有机本体异质结光电二极管(OPD)在传感和成像方面备受关注。其探测率通常受较大的反向偏置暗电流密度(J)限制。最近,通过热导纳或光谱光电流测量,J被归因于由带隙中间态介导的热电荷产生。在此,报道了在-0.5 V偏压下,J低至10⁻⁵ mA cm⁻²的最先进OPD中J的温度依赖性。对于多种供体-受体本体异质结混合物,发现J的热激活能低于混合物的有效带隙,约低0.3至0.5 eV,但高于带隙中间态的预期值。超灵敏的亚带隙光电流光谱表明,OPD中光生电荷的最小光子能量与暗电流热激活能相关。OPD中的暗电流归因于由带边附近的带隙内态介导的供体-受体界面处的热电荷产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验