Suppr超能文献

水下干燥:具有蘑菇状表面微观结构的大型弹性体箔片的储气性能

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures.

作者信息

Mail Matthias, Walheim Stefan, Schimmel Thomas, Barthlott Wilhelm, Gorb Stanislav N, Heepe Lars

机构信息

Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, D-53115 Bonn, Germany.

Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

出版信息

Beilstein J Nanotechnol. 2022 Nov 21;13:1370-1379. doi: 10.3762/bjnano.13.113. eCollection 2022.

Abstract

Superhydrophobic surfaces are well known for most different functions in plants, animals, and thus for biomimetic technical applications. Beside the Lotus Effect, one of their features with great technical, economic and ecologic potential is the Salvinia Effect, the capability to keep a stable air layer when submerged under water. Such air layers are of great importance, e.g., for drag reduction (passive air lubrication), antifouling, sensor applications or oil-water separation. Some biological models, e.g., the floating fern or the backswimmer , show long term stable air retention even under hydrodynamic conditions. Therefore, they are ideal models for the development of technical biomimetic air retaining surfaces. Up to now, several prototypes of such surfaces have been developed, but none provides both, stable air retention and cost effective large scale production. Meanwhile, a novel biomimetic surface is commercially available and produced on a large scale: an adhesive elastomeric film with mushroom-shaped surface microstructures that mimic the adhesion system of animals. In this study, we show that these films, which have been initially developed for a different purpose, due to their specific geometry at the microscale, are capable of stable air retention under water. We present first results concerning the capabilities of mushroom-shaped surface microstructures and show that this elastomer foil is able to stabilize a permanent air layer under water for more than two weeks. Further, the stability of the air layer under pressure was investigated and these results are compared with the predicted theoretical values for air retention of microstructured surfaces. Here, we could show that they fit to the theoretical predictions and that the biomimetic elastomer foil is a promising base for the development of an economically and efficient biomimetic air retaining surface for a broad range of technical applications.

摘要

超疏水表面因其在植物、动物中的多种不同功能以及在仿生技术应用中的功能而广为人知。除了荷叶效应外,其具有巨大技术、经济和生态潜力的一个特性是槐叶萍效应,即在水下时保持稳定空气层的能力。这种空气层非常重要,例如用于减阻(被动空气润滑)、防污、传感器应用或油水分离。一些生物模型,如漂浮蕨类植物或仰泳蝽,即使在流体动力学条件下也能长期稳定地保持空气。因此,它们是开发技术仿生空气保持表面的理想模型。到目前为止,已经开发了几种这种表面的原型,但没有一种能同时提供稳定的空气保持和具有成本效益的大规模生产。与此同时,一种新型仿生表面已在商业上可用并大规模生产:一种具有蘑菇状表面微结构的粘性弹性体薄膜,其模仿动物的粘附系统。在本研究中,我们表明这些最初为不同目的开发的薄膜,由于其微观尺度上的特定几何形状,能够在水下稳定地保持空气。我们展示了关于蘑菇状表面微结构能力的初步结果,并表明这种弹性体箔能够在水下稳定一个永久空气层超过两周。此外,研究了压力下空气层的稳定性,并将这些结果与微结构表面空气保持的预测理论值进行了比较。在这里,我们可以表明它们符合理论预测,并且这种仿生弹性体箔是开发一种经济高效的、适用于广泛技术应用的仿生空气保持表面的有前途的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c63/9704008/0023616d0e6d/Beilstein_J_Nanotechnol-13-1370-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验