Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic.
W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland.
ACS Appl Mater Interfaces. 2022 Dec 21;14(50):56280-56289. doi: 10.1021/acsami.2c15792. Epub 2022 Dec 9.
In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal-substrate interaction between Au and the CeO(111) surface. It was found that the concentration of ionic Au species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au formation on the surface of CeO(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO(111) surface during the interaction with CO, O, and CO + O (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.
在这项工作中,我们使用同步辐射光电子能谱(SRPES)和扫描隧道显微镜(STM)在超高真空(UHV)中制备和研究了两种化学计量的 CeO(111) 表面,其中包含低和高数量的台阶边缘,并用 0.05 ML 的金进行了修饰。UHV 研究有助于解决关于单层高氧化铈台阶边缘如何影响 Au 与 CeO(111)表面之间的金属-基底相互作用的仍未解决的难题。结果发现,CeO 表面上的离子 Au 物种的浓度随氧化铈台阶边缘数量的增加而增加,与 Au 纳米颗粒与 CeO 相互作用后表面上应该形成的 Ce 离子浓度无关。我们将这归因于在 CeO 台阶边缘形成的各种过氧氧物种与 Au 原子相互作用,形成了 CeO(111)表面上 Au 形成的另一个通道。我们通过结合近环境压力 X 射线光电子能谱(NAP-XPS)、UHV-STM 和近环境压力 STM(NAP-STM)研究了高度阶梯 Au/CeO(111)模型样品上的 CO 氧化。这种强大的组合提供了有关在接近 CO 氧化实际工作条件的条件下,Au/CeO(111)表面与 CO、O 和 CO + O(1:1)混合物相互作用过程中发生的过程的综合信息。结果发现,该系统在 CO 中表现出很高的稳定性。然而,随着 O 被添加到反应室中,表面会发生很大的化学和形态变化。即使在 300 K 下,金纳米颗粒也开始通过一种涉及小金纳米颗粒解体以利于大金纳米颗粒的机制生长。随着温度的升高,模型催化剂迅速转变为主要包含大 Au 颗粒的系统,其中不含离子金物种。