Suppr超能文献

用于发热辐射冷却中高效热缓冲的双重封装纳米复合材料。

Dual-Encapsulated Nanocomposite for Efficient Thermal Buffering in Heat-Generating Radiative Cooling.

机构信息

MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing210094, China.

出版信息

ACS Appl Mater Interfaces. 2022 Dec 28;14(51):57215-57224. doi: 10.1021/acsami.2c13991. Epub 2022 Dec 9.

Abstract

Radiative cooling has been considered an innovative passive method to resolve the problem of overheating of electronic devices. However, it is inefficient for cooling huge heat generation components. Herein, we report a dual-encapsulated nanocomposite (DEN) by integrating radiative cooling and phase-change materials (PCMs) for thermal buffering in heat-generating radiative cooling. The leak of PCMs is avoided by a simple dual-encapsulated structure with a three-dimensional (3D) interconnected cellular-like network structure and radiative cooling layer on the surface, 75% superior to the state-of-the-art single encapsulation designs. Additionally, our DEN not only shows outstanding optical properties with strong solar reflection ( = 0.96) and IR-selective emission (ε̅ = 0.94 and η = 1.15) but also exhibits high phase-change enthalpy (Δ = 192.2 J/g, Δ = 175.7 J/g), enabling remarkable radiative cooling capability and desirable thermal energy peak shaving and valley filling effect. Outdoor experiments demonstrate that DEN achieves a temperature drop up to 23 °C compared to the control group without DEN coverage when electronics generate heat. This dual-encapsulated nanocomposite provides a novel strategy and solution for outdoor passive thermal management.

摘要

辐射冷却被认为是一种创新的被动方法,可以解决电子设备过热的问题。然而,对于冷却巨大的发热组件,它的效率并不高。在此,我们报告了一种通过集成辐射冷却和相变材料 (PCM) 的双重封装纳米复合材料 (DEN),用于发热辐射冷却中的热缓冲。通过具有三维(3D)相互连接的蜂窝状网络结构和表面辐射冷却层的简单双重封装结构,可以避免 PCM 的泄漏,比最先进的单封装设计优越 75%。此外,我们的 DEN 不仅表现出出色的光学性能,具有强的太阳光反射率 ( = 0.96) 和 IR 选择性发射率 (ε̅ = 0.94 和 η = 1.15),而且还表现出高的相变焓 (Δ = 192.2 J/g, Δ = 175.7 J/g),从而实现了显著的辐射冷却能力和理想的热能削峰填谷效果。户外实验表明,与没有 DEN 覆盖的对照组相比,当电子设备发热时,DEN 可实现高达 23°C 的温度下降。这种双重封装的纳米复合材料为户外被动热管理提供了一种新的策略和解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验