Suppr超能文献

HIV 病毒蛋白中耐药突变的偶然性和僵化性。

Contingency and Entrenchment of Drug-Resistance Mutations in HIV Viral Proteins.

机构信息

Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States.

Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania19122, United States.

出版信息

J Phys Chem B. 2022 Dec 22;126(50):10622-10636. doi: 10.1021/acs.jpcb.2c06123. Epub 2022 Dec 9.

Abstract

The ability of HIV-1 to rapidly mutate leads to antiretroviral therapy (ART) failure among infected patients. Drug-resistance mutations (DRMs), which cause a fitness penalty to intrinsic viral fitness, are compensated by accessory mutations with favorable epistatic interactions which cause an evolutionary trapping effect, but the kinetics of this overall process has not been well characterized. Here, using a Potts Hamiltonian model describing epistasis combined with kinetic Monte Carlo simulations of evolutionary trajectories, we explore how epistasis modulates the evolutionary dynamics of HIV DRMs. We show how the occurrence of a drug-resistance mutation is contingent on favorable epistatic interactions with many other residues of the sequence background and that subsequent mutations entrench DRMs. We measure the time-autocorrelation of fluctuations in the likelihood of DRMs due to epistatic coupling with the sequence background, which reveals the presence of two evolutionary processes controlling DRM kinetics with two distinct time scales. Further analysis of waiting times for the evolutionary trapping effect to reverse reveals that the sequences which entrench (trap) a DRM are responsible for the slower time scale. We also quantify the overall strength of epistatic effects on the evolutionary kinetics for different mutations and show these are much larger for DRM positions than polymorphic positions, and we also show that trapping of a DRM is often caused by the collective effect of many accessory mutations, rather than a few strongly coupled ones, suggesting the importance of multiresidue sequence variations in HIV evolution. The analysis presented here provides a framework to explore the kinetic pathways through which viral proteins like HIV evolve under drug-selection pressure.

摘要

HIV-1 快速突变的能力导致感染患者的抗逆转录病毒治疗 (ART) 失败。耐药突变 (DRMs) 会导致内在病毒适应性降低,但有利的上位相互作用的辅助突变会对其进行补偿,从而导致进化陷阱效应,但这一整体过程的动力学尚未得到很好的描述。在这里,我们使用描述上位相互作用的 Potts 哈密顿模型结合进化轨迹的动力学蒙特卡罗模拟,探索了上位相互作用如何调节 HIV DRMs 的进化动力学。我们展示了耐药突变的发生如何取决于与序列背景中许多其他残基的有利上位相互作用,以及随后的突变如何使 DRMs 根深蒂固。我们测量了由于与序列背景的上位相互作用而导致 DRMs 出现的可能性的时间自相关,这揭示了控制 DRM 动力学的两个进化过程的存在,它们具有两个不同的时间尺度。进一步分析进化陷阱效应逆转的等待时间表明,使 DRM 陷入困境(困住)的序列负责较慢的时间尺度。我们还量化了不同突变对进化动力学的上位相互作用的整体强度,结果表明,对于 DRM 位置,上位相互作用的强度比多态性位置大得多,并且我们还表明,DRM 的捕获通常是由许多辅助突变的集体效应引起的,而不是少数几个强耦合突变引起的,这表明多残基序列变异在 HIV 进化中的重要性。这里提出的分析为探索 HIV 等病毒蛋白在药物选择压力下进化的动力学途径提供了一个框架。

相似文献

1
Contingency and Entrenchment of Drug-Resistance Mutations in HIV Viral Proteins.
J Phys Chem B. 2022 Dec 22;126(50):10622-10636. doi: 10.1021/acs.jpcb.2c06123. Epub 2022 Dec 9.
2
Kinetic coevolutionary models predict the temporal emergence of HIV-1 resistance mutations under drug selection pressure.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2316662121. doi: 10.1073/pnas.2316662121. Epub 2024 Apr 1.
3
Using machine learning and big data to explore the drug resistance landscape in HIV.
PLoS Comput Biol. 2021 Aug 26;17(8):e1008873. doi: 10.1371/journal.pcbi.1008873. eCollection 2021 Aug.
5
Inference of Epistatic Effects Leading to Entrenchment and Drug Resistance in HIV-1 Protease.
Mol Biol Evol. 2017 Jun 1;34(6):1291-1306. doi: 10.1093/molbev/msx095.
6
Trends in HIV-1 Drug Resistance Mutations from a U.S. Reference Laboratory from 2006 to 2017.
AIDS Res Hum Retroviruses. 2019 Aug;35(8):698-709. doi: 10.1089/AID.2019.0063. Epub 2019 Jul 10.

引用本文的文献

1
Evolutionary Sequence and Structural Basis for the Epistatic Origins of Drug Resistance in HIV.
bioRxiv. 2025 May 2:2025.04.30.651576. doi: 10.1101/2025.04.30.651576.
2
Entrenchment and contingency in neutral protein evolution with epistasis.
bioRxiv. 2025 Jan 14:2025.01.09.632266. doi: 10.1101/2025.01.09.632266.
4
Machine learning in biological physics: From biomolecular prediction to design.
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311807121. doi: 10.1073/pnas.2311807121. Epub 2024 Jun 24.
5
Kinetic coevolutionary models predict the temporal emergence of HIV-1 resistance mutations under drug selection pressure.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2316662121. doi: 10.1073/pnas.2316662121. Epub 2024 Apr 1.
7
In vivo functional phenotypes from a computational epistatic model of evolution.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2308895121. doi: 10.1073/pnas.2308895121. Epub 2024 Jan 29.

本文引用的文献

1
Public availability of HIV-1 drug resistance sequence and treatment data: a systematic review.
Lancet Microbe. 2022 May;3(5):e392-e398. doi: 10.1016/S2666-5247(21)00250-0. Epub 2022 Jan 19.
2
Limits to detecting epistasis in the fitness landscape of HIV.
PLoS One. 2022 Jan 18;17(1):e0262314. doi: 10.1371/journal.pone.0262314. eCollection 2022.
3
The generative capacity of probabilistic protein sequence models.
Nat Commun. 2021 Nov 2;12(1):6302. doi: 10.1038/s41467-021-26529-9.
4
Global epistasis emerges from a generic model of a complex trait.
Elife. 2021 Mar 29;10:e64740. doi: 10.7554/eLife.64740.
5
Mi3-GPU: MCMC-based Inverse Ising Inference on GPUs for protein covariation analysis.
Comput Phys Commun. 2021 Mar;260. doi: 10.1016/j.cpc.2020.107312. Epub 2020 Apr 17.
6
Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond.
Chem Rev. 2021 Mar 24;121(6):3238-3270. doi: 10.1021/acs.chemrev.0c00648. Epub 2021 Jan 7.
7
Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease.
PLoS Genet. 2020 Oct 21;16(10):e1009009. doi: 10.1371/journal.pgen.1009009. eCollection 2020 Oct.
9
Epistatic contributions promote the unification of incompatible models of neutral molecular evolution.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5873-5882. doi: 10.1073/pnas.1913071117. Epub 2020 Mar 2.
10
Epistasis and entrenchment of drug resistance in HIV-1 subtype B.
Elife. 2019 Oct 8;8:e50524. doi: 10.7554/eLife.50524.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验