Suppr超能文献

IPIE:一个基于Python的辅助场量子蒙特卡罗程序,在CPU和GPU上兼具灵活性和高效性。

ipie: A Python-Based Auxiliary-Field Quantum Monte Carlo Program with Flexibility and Efficiency on CPUs and GPUs.

作者信息

Malone Fionn D, Mahajan Ankit, Spencer James S, Lee Joonho

机构信息

Google Research, Venice, California 90291, United States.

Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States.

出版信息

J Chem Theory Comput. 2023 Jan 10;19(1):109-121. doi: 10.1021/acs.jctc.2c00934. Epub 2022 Dec 12.

Abstract

We report the development of a python-based auxiliary-field quantum Monte Carlo (AFQMC) program, ipie, with preliminary timing benchmarks and new AFQMC results on the isomerization of [CuO]. We demonstrate how implementations for both central and graphical processing units (CPUs and GPUs) are achieved in ipie. We show an interface of ipie with PySCF as well as a straightforward template for adding new estimators to ipie. Our timing benchmarks against other C++ codes, QMCPACK and Dice, suggest that ipie is faster or similarly performing for all chemical systems considered on both CPUs and GPUs. Our results on [CuO] using selected configuration interaction trials show that it is possible to converge the ph-AFQMC isomerization energy between bis(μ-oxo) and μ-η:η peroxo configurations to the exact known results for small basis sets with 10-10 determinants. We also report the isomerization energy with a quadruple-zeta basis set with an estimated error less than a kcal/mol, which involved 52 electrons and 290 orbitals with 10 determinants in the trial wave function. These results highlight the utility of ph-AFQMC and ipie for systems with modest strong correlation and large-scale dynamic correlation.

摘要

我们报告了基于Python的辅助场量子蒙特卡罗(AFQMC)程序ipie的开发情况,给出了初步的计时基准以及关于[CuO]异构化的新AFQMC结果。我们展示了ipie如何实现中央处理器和图形处理器(CPU和GPU)的计算。我们展示了ipie与PySCF的接口以及向ipie添加新估计器的简单模板。我们与其他C++代码QMCPACK和Dice的计时基准比较表明,在CPU和GPU上考虑的所有化学系统中,ipie的速度更快或性能相当。我们使用选定的组态相互作用试验对[CuO]的结果表明,对于具有10 - 10个行列式的小基组,有可能将双(μ - 氧代)和μ - η:η过氧构型之间的ph - AFQMC异构化能收敛到确切的已知结果。我们还报告了使用四重zeta基组的异构化能,估计误差小于1千卡/摩尔,该计算涉及52个电子和290个轨道,试探波函数中有10个行列式。这些结果突出了ph - AFQMC和ipie对于具有适度强关联和大规模动态关联系统的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验