Tani Hidenori, Sadahiro Taketaro, Yamada Yu, Isomi Mari, Yamakawa Hiroyuki, Fujita Ryo, Abe Yuto, Akiyama Tatsuya, Nakano Koji, Kuze Yuta, Seki Masahide, Suzuki Yutaka, Fujisawa Manabu, Sakata-Yanagimoto Mamiko, Chiba Shigeru, Fukuda Keiichi, Ieda Masaki
Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan (H.T., H.Y., K.F.).
Departments of Cardiology (T.S., Y.Y., M. Isomi, R.F., Y.A., T.A., K.N., M. Ieda), University of Tsukuba, Tsukuba City, Ibaraki, Japan.
Circulation. 2023 Jan 17;147(3):223-238. doi: 10.1161/CIRCULATIONAHA.121.058655. Epub 2022 Dec 12.
Because adult cardiomyocytes have little regenerative capacity, resident cardiac fibroblasts (CFs) synthesize extracellular matrix after myocardial infarction (MI) to form fibrosis, leading to cardiac dysfunction and heart failure. Therapies that can regenerate the myocardium and reverse fibrosis in chronic MI are lacking. The overexpression of cardiac transcription factors, including (MGTH), can directly reprogram CFs into induced cardiomyocytes (iCMs) and improve cardiac function under acute MI. However, the ability of in vivo cardiac reprogramming to repair chronic MI with established scars is undetermined.
We generated a novel Tcf21/reporter/MGTH2A transgenic mouse system in which tamoxifen treatment could induce both MGTH and reporter expression in the resident CFs for cardiac reprogramming and fibroblast lineage tracing. We first tested the efficacy of this transgenic system in vitro and in vivo for acute MI. Next, we analyzed in vivo cardiac reprogramming and fusion events under chronic MI using Tcf21/Tomato/MGTH2A and Tcf21/mTmG/MGTH2A mice, respectively. Microarray and single-cell RNA sequencing were performed to determine the mechanism of cardiac repair by in vivo reprogramming.
We confirmed the efficacy of transgenic in vitro and in vivo cardiac reprogramming for acute MI. In chronic MI, in vivo cardiac reprogramming converted ≈2% of resident CFs into iCMs, in which a majority of iCMs were generated by means of bona fide cardiac reprogramming rather than by fusion with cardiomyocytes. Cardiac reprogramming significantly improved myocardial contraction and reduced fibrosis in chronic MI. Microarray analyses revealed that the overexpression of MGTH activated cardiac program and concomitantly suppressed fibroblast and inflammatory signatures in chronic MI. Single-cell RNA sequencing demonstrated that resident CFs consisted of 7 subclusters, in which the profibrotic CF population increased under chronic MI. Cardiac reprogramming suppressed fibroblastic gene expression in chronic MI by means of conversion of profibrotic CFs to a quiescent antifibrotic state. MGTH overexpression induced antifibrotic effects partly by suppression of Meox1, a central regulator of fibroblast activation.
These results demonstrate that cardiac reprogramming could repair chronic MI by means of myocardial regeneration and reduction of fibrosis. These findings present opportunities for the development of new therapies for chronic MI and heart failure.
由于成年心肌细胞的再生能力较弱,心肌梗死后,心脏驻留成纤维细胞(CFs)合成细胞外基质以形成纤维化,导致心脏功能障碍和心力衰竭。目前缺乏能够使慢性心肌梗死的心肌再生并逆转纤维化的治疗方法。包括(MGTH)在内的心脏转录因子的过表达可将CFs直接重编程为诱导心肌细胞(iCMs),并在急性心肌梗死时改善心脏功能。然而,体内心脏重编程修复已形成瘢痕的慢性心肌梗死的能力尚不确定。
我们构建了一种新型的Tcf21/报告基因/MGTH2A转基因小鼠系统,其中他莫昔芬处理可诱导驻留CFs中MGTH和报告基因的表达,用于心脏重编程和成纤维细胞谱系追踪。我们首先在体外和体内测试了该转基因系统对急性心肌梗死的疗效。接下来,我们分别使用Tcf21/番茄红蛋白/MGTH2A和Tcf21/mTmG/MGTH2A小鼠分析了慢性心肌梗死时的体内心脏重编程和融合事件。进行基因芯片和单细胞RNA测序以确定体内重编程心脏修复的机制。
我们证实了转基因在体外和体内对急性心肌梗死进行心脏重编程的疗效。在慢性心肌梗死中,体内心脏重编程将约2%的驻留CFs转化为iCMs,其中大多数iCMs是通过真正的心脏重编程而非与心肌细胞融合产生的。心脏重编程显著改善了慢性心肌梗死时的心肌收缩并减少了纤维化。基因芯片分析显示,MGTH的过表达激活了慢性心肌梗死中的心脏程序,并同时抑制了成纤维细胞和炎症特征。单细胞RNA测序表明,驻留CFs由7个亚群组成,其中促纤维化CF群体在慢性心肌梗死时增加。心脏重编程通过将促纤维化CFs转化为静止的抗纤维化状态,抑制了慢性心肌梗死中的成纤维细胞基因表达。MGTH的过表达部分通过抑制成纤维细胞激活的核心调节因子Meox1诱导抗纤维化作用。
这些结果表明,心脏重编程可通过心肌再生和减少纤维化来修复慢性心肌梗死。这些发现为慢性心肌梗死和心力衰竭新疗法的开发提供了机会。