Suppr超能文献

鉴定胃癌患者腹膜转移相关代谢基因。

Identification of metabolism-related genes for predicting peritoneal metastasis in patients with gastric cancer.

机构信息

Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

BMC Genom Data. 2022 Dec 12;23(1):84. doi: 10.1186/s12863-022-01096-0.

Abstract

OBJECTIVE

The reprogramming of metabolism is an important factor in the metastatic process of cancer. In our study, we intended to investigate the predictive value of metabolism-related genes (MRGs) in recurrent gastric cancer (GC) patients with peritoneal metastasis.

METHODS

The sequencing data of mRNA of GC patients were obtained from Asian Cancer Research Group (ACRG) and the GEO databases (GSE53276). The differentially expressed MRGs (DE-MRGs) between a cell line without peritoneal metastasis (HSC60) and one with peritoneal metastasis (60As6) were analyzed with the Limma package. According to the LASSO regression, eight MRGs were identified as crucially related to peritoneal seeding recurrence in patients. Then, disease free survival related genes were screened using Cox regression, and a promising prognostic model was constructed based on 8 MRGs. We trained and verified it in two independent cohort.

RESULTS

We confirmed 713 DE-MRGs and the enriched pathways. Pathway analysis found that the MRG-related pathways were related to tumor metabolism development. With the help of Kaplan-Meier analysis, we found that the group with higher risk scores had worse rates of peritoneal seeding recurrence than the group with lower scores in the cohorts.

CONCLUSIONS

This study developed an eight-gene signature correlated with metabolism that could predict peritoneal seeding recurrence for GC patients. This signature could be a promising prognostic model, providing better strategy in treatment.

摘要

目的

代谢重编程是癌症转移过程中的一个重要因素。在本研究中,我们旨在探讨代谢相关基因(MRGs)在复发性胃癌(GC)伴腹膜转移患者中的预测价值。

方法

从亚洲癌症研究组织(ACRG)和 GEO 数据库(GSE53276)中获取 GC 患者 mRNA 测序数据。使用 Limma 包分析无腹膜转移细胞系(HSC60)和腹膜转移细胞系(60As6)之间的差异表达 MRGs(DE-MRGs)。根据 LASSO 回归,鉴定出 8 个与患者腹膜播种复发密切相关的 MRGs。然后,使用 Cox 回归筛选无病生存相关基因,并基于 8 个 MRGs 构建了一个有前途的预后模型。我们在两个独立的队列中进行了训练和验证。

结果

我们验证了 713 个 DE-MRGs 和富集的通路。通路分析发现,MRG 相关通路与肿瘤代谢发展有关。通过 Kaplan-Meier 分析,我们发现在队列中,风险评分较高的组腹膜播种复发率比评分较低的组差。

结论

本研究开发了一个与代谢相关的 8 基因特征,可以预测 GC 患者的腹膜播种复发。该特征可能是一个有前途的预后模型,为治疗提供了更好的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3214/9743729/92200d5c0e5f/12863_2022_1096_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验