Suppr超能文献

[肝豆状核变性合并脂质代谢异常患者肝纤维化预测列线图的建立与验证]

[Establishment and validation of a predictive nomogram for liver fibrosis in patients with Wilson disease and abnormal lipid metabolism].

作者信息

Zhao C, Dong T, Sun L, Hu H, Wang Q, Tian L, Jiang Z

机构信息

Anhui University of Chinese Medicine, Hefei 230038, China.

First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2022 Nov 20;42(11):1720-1725. doi: 10.12122/j.issn.1673-4254.2022.11.17.

Abstract

OBJECTIVE

To establish and validate predictive nomogram for liver fibrosis in patients with Wilson disease (WD) showing abnormal lipid metabolism.

METHODS

We retrospectively collected the clinical data of 500 patients with WD showing abnormalities in lipid metabolism, who were treated in the Department of Encephalopathy of the First Affiliated Hospital of Anhui University of Chinese Medicine from December, 2018 to December, 2021 and divided into modeling group and validation group. The independent risk factors of liver fibrosis in these patients were screened using LASSO regression and multivariate logistic regression analysis for establishment of the predictive nomogram. The area under the curve (AUC), calibration curve and decision curve of the receiver-operating characteristic curve (ROC) were used for internal and external verification of the nomogram in the modeling and validation group and evaluating the differentiation, calibration and clinical practicability of the model.

RESULTS

Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (Apo-B) were independent risk factors for the development of liver fibrosis in patients with WD and abnormal lipid metabolism ( < 0.05). The predictive nomogram showed good discrimination, calibration and clinical utility in both the modeling and validation groups.

CONCLUSION

The established predictive nomogram in this study has a high accuracy for early identification and risk prediction of liver fibrosis in patients with WD having abnormal lipid metabolism.

摘要

目的

建立并验证用于预测肝豆状核变性(WD)合并脂质代谢异常患者肝纤维化的列线图。

方法

回顾性收集2018年12月至2021年12月在安徽中医药大学第一附属医院脑病科接受治疗的500例WD合并脂质代谢异常患者的临床资料,分为建模组和验证组。采用LASSO回归和多因素logistic回归分析筛选这些患者肝纤维化的独立危险因素,以建立预测列线图。采用受试者操作特征曲线(ROC)的曲线下面积(AUC)、校准曲线和决策曲线对建模组和验证组的列线图进行内部和外部验证,评估模型的区分度、校准度和临床实用性。

结果

甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)和载脂蛋白B(Apo-B)是WD合并脂质代谢异常患者发生肝纤维化的独立危险因素(<0.05)。预测列线图在建模组和验证组中均显示出良好的区分度、校准度和临床实用性。

结论

本研究建立的预测列线图对WD合并脂质代谢异常患者肝纤维化的早期识别和风险预测具有较高的准确性。

相似文献

1
[Establishment and validation of a predictive nomogram for liver fibrosis in patients with Wilson disease and abnormal lipid metabolism].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Nov 20;42(11):1720-1725. doi: 10.12122/j.issn.1673-4254.2022.11.17.
2
Nomogram for prediction of portal vein system thrombosis after splenectomy for hypersplenism in patients with Wilson disease.
Ann Palliat Med. 2022 Dec;11(12):3626-3635. doi: 10.21037/apm-22-826. Epub 2022 Dec 12.
6
Establishment and validation of a nomogram for progression to diabetic foot ulcers in elderly diabetic patients.
Front Endocrinol (Lausanne). 2023 Apr 4;14:1107830. doi: 10.3389/fendo.2023.1107830. eCollection 2023.
8
Construction and validation of a nomogram for predicting the risk of secondary peripheral neuropathy in patients with advanced lung cancer.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022 Dec 25;51(6):716-723. doi: 10.3724/zdxbyxb-2022-0303.
9
[Establishment and validation of a predictive nomogram model for advanced gastric cancer with perineural invasion].
Zhonghua Wei Chang Wai Ke Za Zhi. 2020 Nov 25;23(11):1059-1066. doi: 10.3760/cma.j.cn.441530-20200103-00004.
10
A Novel Prediction Model for Significant Liver Fibrosis in Patients with Chronic Hepatitis B.
Biomed Res Int. 2020 Jul 8;2020:6839137. doi: 10.1155/2020/6839137. eCollection 2020.

引用本文的文献

1
Development and validation of a nomogram model for prediction of dyslipidemia in children with Wilson disease: a retrospective analysis.
Front Endocrinol (Lausanne). 2025 Aug 21;16:1642083. doi: 10.3389/fendo.2025.1642083. eCollection 2025.
2
Risk factor analysis and nomogram development for advanced-stage hepatic fibrosis in patients with Wilson's disease.
Front Med (Lausanne). 2025 Jul 30;12:1650584. doi: 10.3389/fmed.2025.1650584. eCollection 2025.
3
Ideal serum non-ceruloplasmin bound copper prediction for long-term treated patients with Wilson disease: a nomogram model.
Front Med (Lausanne). 2023 Nov 3;10:1275242. doi: 10.3389/fmed.2023.1275242. eCollection 2023.

本文引用的文献

2
Low Lipoprotein(a) Levels Predict Hepatic Fibrosis in Patients With Nonalcoholic Fatty Liver Disease.
Hepatol Commun. 2022 Mar;6(3):535-549. doi: 10.1002/hep4.1830. Epub 2021 Oct 22.
3
Plasma Levels of Homocysteine is Associated with Liver Fibrosis in Health Check-Up Population.
Int J Gen Med. 2021 Sep 3;14:5175-5181. doi: 10.2147/IJGM.S329863. eCollection 2021.
4
Copper and lipid metabolism: A reciprocal relationship.
Biochim Biophys Acta Gen Subj. 2021 Nov;1865(11):129979. doi: 10.1016/j.bbagen.2021.129979. Epub 2021 Aug 6.
5
[Factors affecting survival prognosis of advanced gastric cancer and establishment of a nomogram predictive model].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Apr 20;41(4):621-627. doi: 10.12122/j.issn.1673-4254.2021.04.21.
6
An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase.
Am J Physiol Gastrointest Liver Physiol. 2020 Oct 1;319(4):G469-G480. doi: 10.1152/ajpgi.00049.2020. Epub 2020 Aug 19.
7
Wilson Disease: An Overview and Approach to Management.
Neurol Clin. 2020 May;38(2):417-432. doi: 10.1016/j.ncl.2020.01.005. Epub 2020 Feb 28.
8
The Prevalence of Wilson's Disease: An Update.
Hepatology. 2020 Feb;71(2):722-732. doi: 10.1002/hep.30911. Epub 2020 Jan 31.
9
Nomogram to Predict Overall Survival for Thoracic Esophageal Squamous Cell Carcinoma Patients After Radical Esophagectomy.
Ann Surg Oncol. 2019 Sep;26(9):2890-2898. doi: 10.1245/s10434-019-07393-w. Epub 2019 Jun 10.
10
Development and validation of a prognostic nomogram for early-onset colon cancer.
Biosci Rep. 2019 Jun 20;39(6). doi: 10.1042/BSR20181781. Print 2019 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验