Suppr超能文献

肝豆状核变性患者晚期肝纤维化的危险因素分析及列线图构建

Risk factor analysis and nomogram development for advanced-stage hepatic fibrosis in patients with Wilson's disease.

作者信息

Zhou Jiafeng, Li Zuolong, Wang Junwei, Jiang Zhenzhen, Wang Tao, Xie Tianyu, Wang Liangchen, Kang Shuai, Tao Zhuang, Wang Meixia

机构信息

Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.

Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China.

出版信息

Front Med (Lausanne). 2025 Jul 30;12:1650584. doi: 10.3389/fmed.2025.1650584. eCollection 2025.

Abstract

PURPOSE

To investigate the risk factors for advanced-stage hepatic fibrosis in Wilson's disease (WD), and developed a predictive nomogram to screen high risk patients with WD for early prevention and intervention.

METHODS

We retrospectively analyzed clinical data from WD in The First Affiliated Hospital of Anhui University of Chinese medicine between January 2010 and December 2024. Patients were divided into advanced hepatic fibrosis and non-advanced fibrosis groups according liver stiffness measurement. Identification of the independent risk factors for advanced hepatic fibrosis in WD was conducted through univariate and multivariate Cox regression analyses, followed by the construction of the clinical predictive model. The discriminative power, calibration, and clinical utility of the model were validated by receiver operating characteristic, calibration curves, and decision curve analysis (DCA).

RESULTS

The study cohort comprised 221 patients. Notably, CER, LN, HDL-C, TG, PLT, Sex, and Apo-A1 were identified as independent risk factors for advanced hepatic fibrosis in WD patients undergoing long-term maintenance therapy. The C-index demonstrated excellent discriminative capacity [training cohort: area under the curve (AUC) values of 0.918 at 36 months, 0.914 at 60 months, and 0.935 at 84 months; validation cohort: AUC values of 0.906, 0.917, and 0.888 at corresponding time points]. Calibration curves exhibited strong alignment between predicted and observed outcomes. The DCA quantified clinical benefit probability thresholds across varying time intervals.

CONCLUSION

The nomogram predictive model demonstrated high accuracy and provides a practical tool for the early identification and risk prediction of advanced hepatic fibrosis in WD patients undergoing long-term maintenance therapy.

摘要

目的

探讨肝豆状核变性(WD)患者进展期肝纤维化的危险因素,并建立预测列线图,以筛查WD高危患者,进行早期预防和干预。

方法

回顾性分析安徽中医药大学第一附属医院2010年1月至2024年12月期间WD患者的临床资料。根据肝脏硬度测量结果将患者分为进展期肝纤维化组和非进展期纤维化组。通过单因素和多因素Cox回归分析确定WD进展期肝纤维化的独立危险因素,随后构建临床预测模型。通过受试者工作特征曲线、校准曲线和决策曲线分析(DCA)验证模型的鉴别能力、校准度和临床实用性。

结果

研究队列包括221例患者。值得注意的是,铜蓝蛋白(CER)、层粘连蛋白(LN)、高密度脂蛋白胆固醇(HDL-C)、甘油三酯(TG)、血小板(PLT)、性别和载脂蛋白A1(Apo-A1)被确定为接受长期维持治疗的WD患者进展期肝纤维化的独立危险因素。C指数显示出良好的鉴别能力[训练队列:36个月时曲线下面积(AUC)值为0.918,60个月时为0.914,84个月时为0.935;验证队列:相应时间点的AUC值分别为0.906、0.917和0.888]。校准曲线显示预测结果与观察结果高度一致。DCA量化了不同时间间隔的临床获益概率阈值。

结论

列线图预测模型具有较高的准确性,为接受长期维持治疗的WD患者进展期肝纤维化的早期识别和风险预测提供了一种实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b6/12343619/a9da3c580c09/fmed-12-1650584-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验