Hybrid Materials Center (HMC), Sejong University, Seoul, 05006, Republic of Korea.
Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea.
Small. 2023 Feb;19(8):e2205881. doi: 10.1002/smll.202205881. Epub 2022 Dec 11.
Two-dimensional layered transition metal dichalcogenides have emerged as promising materials for supercapacitors and hydrogen evolution reaction (HER) applications. Herein, the molybdenum sulfide (MoS )@vanadium sulfide (VS ) and tungsten sulfide (WS )@VS hybrid nano-architectures prepared via a facile one-step hydrothermal approach is reported. Hierarchical hybrids lead to rich exposed active edge sites, tuned porous nanopetals-decorated morphologies, and high intrinsic activity owing to the strong interfacial interaction between the two materials. Fabricated supercapacitors using MoS @VS and WS @VS electrodes exhibit high specific capacitances of 513 and 615 F g , respectively, at an applied current of 2.5 A g by the three-electrode configuration. The asymmetric device fabricated using WS @VS electrode exhibits a high specific capacitance of 222 F g at an applied current of 2.5 A g with the specific energy of 52 Wh kg at a specific power of 1 kW kg . For HER, the WS @VS catalyst shows noble characteristics with an overpotential of 56 mV to yield 10 mA cm , a Tafel slope of 39 mV dec , and an exchange current density of 1.73 mA cm . In addition, density functional theory calculations are used to evaluate the durable heterostructure formation and adsorption of hydrogen atom on the various accessible sites of MoS @VS and WS @VS heterostructures.
二维层状过渡金属二硫属化物已成为超级电容器和析氢反应(HER)应用的有前途的材料。在此,通过简便的一步水热法报告了二硫化钼(MoS )@硫化钒(VS )和二硫化钨(WS )@VS 杂化纳米结构的制备。分层杂化导致丰富的暴露活性边缘位点,调谐多孔纳米瓣装饰的形态,以及由于两种材料之间的强界面相互作用而具有高本征活性。使用 MoS @VS 和 WS @VS 电极制造的超级电容器在三电极配置下以 2.5 A g 的电流应用时分别表现出 513 和 615 F g 的高比电容。使用 WS @VS 电极制造的不对称器件在 2.5 A g 的电流应用下表现出 222 F g 的高比电容,具有 52 Wh kg 的比能量和 1 kW kg 的比功率 。对于 HER,WS @VS 催化剂表现出贵金属特性,具有 56 mV 的过电位以产生 10 mA cm ,39 mV dec 的塔菲尔斜率和 1.73 mA cm 的交换电流密度。此外,密度泛函理论计算用于评估各种可用位点上 MoS @VS 和 WS @VS 异质结构的持久异质结构形成和氢原子的吸附。