Suppr超能文献

工程化钼硒/钨硒复合材料以替代用于析氢反应和染料敏化太阳能电池的稀缺铂电极。

Engineering MoSe/WS Hybrids to Replace the Scarce Platinum Electrode for Hydrogen Evolution Reactions and Dye-Sensitized Solar Cells.

作者信息

Vikraman Dhanasekaran, Hussain Sajjad, Patil Supriya A, Truong Linh, Arbab Alvira Ayoub, Jeong Sung Hoon, Chun Seung-Hyun, Jung Jongwan, Kim Hyun-Seok

机构信息

Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.

Hybrid Materials Center (HMC), Sejong University, Seoul 05006, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5061-5072. doi: 10.1021/acsami.0c19890. Epub 2021 Jan 20.

Abstract

In recent times, two-dimensional transition-metal dichalcogenides (TMDs) have become extremely attractive and proficient electrodes for dye-sensitized solar cells (DSSCs) and water electrolysis hydrogen evolution as alternatives to the scarce metal platinum (Pt). The active TMD molybdenum selenide (MoSe) and tungsten disulfide (WS) are inspiring systems owing to their abundance of active sulfur and selenium sites, but their outputs are lacking due to their inactive basal planes and ineffective transport behavior. In this work, van der Waals interrelated MoSe/WS hybrid structures were constructed on conducting glass substrates by chemicophysical methodologies. For the first time, the constructed MoSe/WS structures were effectively used as a counter electrode for DSSCs and an active electrode for hydrogen evolution to replace the nonabundant Pt. The assembled DSSCs using the designed MoSe/WS heterostructure counter electrode provided a superior power-conversion efficiency of 9.92% and a photocurrent density of 23.10 mA·cm, unmatchable by most of the TMD-based structures. The MoSe/WS heterostructure displayed excellent electrocatalytic hydrogen evolution behavior with a 75 mV overpotential to drive a 10 mA·cm current density, a 60 mV·dec Tafel slope, and an over 20 h durable process in an acidic medium. The results demonstrated the advantages of the MoSe/WS hybrid development for generating interfacial transport and active facet distribution and enriching the electrocatalytic activity for DSSCs and the water-splitting hydrogen evolution process.

摘要

近年来,二维过渡金属二硫属化物(TMDs)作为稀缺金属铂(Pt)的替代品,已成为染料敏化太阳能电池(DSSCs)和水电解析氢极具吸引力且性能优异的电极。活性TMD硒化钼(MoSe)和二硫化钨(WS)因其富含活性硫和硒位点而成为令人瞩目的体系,但其基面不活跃且传输行为低效,导致其输出性能欠佳。在这项工作中,通过化学物理方法在导电玻璃基板上构建了范德华相互关联的MoSe/WS混合结构。首次将构建的MoSe/WS结构有效地用作DSSCs的对电极和析氢活性电极,以替代稀缺的Pt。使用所设计的MoSe/WS异质结构对电极组装的DSSCs提供了9.92%的优异功率转换效率和23.10 mA·cm的光电流密度,这是大多数基于TMD的结构所无法比拟的。MoSe/WS异质结构在酸性介质中表现出优异的电催化析氢行为,在驱动10 mA·cm电流密度时具有75 mV的过电位、60 mV·dec的塔菲尔斜率以及超过20小时的持久过程。结果证明了MoSe/WS混合结构在产生界面传输和活性晶面分布以及丰富DSSCs和水分解析氢过程的电催化活性方面的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验