Mandal Sunanda, Bose Himadri, Ramesh Kheerthana, Sahu Rajendra Prasad, Saha Anumeha, Sar Pinaki, Kazy Sufia Khannam
Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India.
Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India.
Front Microbiol. 2022 Nov 24;13:1018940. doi: 10.3389/fmicb.2022.1018940. eCollection 2022.
Characterization of inorganic carbon (C) utilizing microorganisms from deep crystalline rocks is of major scientific interest owing to their crucial role in global carbon and other elemental cycles. In this study we investigate the microbial populations from the deep [up to 2,908 meters below surface (mbs)] granitic rocks within the Koyna seismogenic zone, reactivated (enriched) under anaerobic, high temperature (50°C), chemolithoautotrophic conditions. Subsurface rock samples from six different depths (1,679-2,908 mbs) are incubated (180 days) with CO (+H) or HCO as the sole C source. Estimation of total protein, ATP, utilization of NO and SO and 16S rRNA gene qPCR suggests considerable microbial growth within the chemolithotrophic conditions. We note a better response of rock hosted community towards CO (+H) over HCO . 16S rRNA gene amplicon sequencing shows a depth-wide distribution of diverse chemolithotrophic (and a few fermentative) Bacteria and Archaea. , , unclassified Burkholderiaceae and Enterobacteriaceae are reactivated as dominant organisms from the enrichments of the deeper rocks (2335-2,908 mbs) with both CO and HCO . For the rock samples from shallower depths, organisms of varied taxa are enriched under CO (+H) and HCO . , , , and Thaumarchaeota are major CO (+H) utilizers, while , , , respond towards HCO . H oxidizing , , , CO fixing Cyanobacteria , , and methanogenic archaea are also enriched. Enriched chemolithoautotrophic members show good correlation with CO, CH and H concentrations of the native rock environments, while the organisms from upper horizons correlate more to NO , SO Fe and TIC levels of the rocks. Co-occurrence networks suggest close interaction between chemolithoautotrophic and chemoorganotrophic/fermentative organisms. Carbon fixing 3-HP and DC/HB cycles, hydrogen, sulfur oxidation, CH and acetate metabolisms are predicted in the enriched communities. Our study elucidates the presence of live, C and H utilizing Bacteria and Archaea in deep subsurface granitic rocks, which are enriched successfully. Significant impact of depth and geochemical controls on relative distribution of various chemolithotrophic species enriched and their C and H metabolism are highlighted. These endolithic microorganisms show great potential for answering the fundamental questions of deep life and their exploitation in CO capture and conversion to useful products.
对来自深层结晶岩的无机碳(C)利用微生物进行表征具有重大科学意义,因为它们在全球碳和其他元素循环中起着关键作用。在本研究中,我们调查了科伊纳地震活动带内深层[地表以下达2908米(mbs)]花岗岩中的微生物群落,这些微生物群落在厌氧、高温(50°C)、化学自养条件下被激活(富集)。来自六个不同深度(1679 - 2908 mbs)的地下岩石样本在以CO(+H)或HCO作为唯一碳源的条件下进行培养(180天)。对总蛋白、ATP、NO和SO的利用以及16S rRNA基因qPCR的估计表明,在化学自养条件下有相当数量的微生物生长。我们注意到岩石中的群落对CO(+H)的反应比对HCO的反应更好。16S rRNA基因扩增子测序显示,多种化学自养(以及一些发酵型)细菌和古菌在深度范围内分布。未分类的伯克霍尔德菌科和肠杆菌科在来自较深岩石(2335 - 2908 mbs)的CO和HCO富集物中作为优势生物被激活。对于较浅深度的岩石样本,不同分类群的生物在CO(+H)和HCO条件下被富集。、、、和泉古菌门是主要的CO(+H)利用者,而、、、对HCO有反应。氧化氢的、、、、固定CO的蓝细菌、、和产甲烷古菌也被富集。富集的化学自养成员与原生岩石环境中的CO、CH和H浓度显示出良好的相关性,而来自上层的生物与岩石中的NO、SO、Fe和总无机碳水平相关性更强。共现网络表明化学自养生物与化学有机营养/发酵生物之间存在密切相互作用。在富集群落中预测了碳固定的3 - HP和DC/HB循环、氢、硫氧化、CH和乙酸代谢。我们的研究阐明了在深层地下花岗岩中存在活跃的利用C和H的细菌和古菌,它们已成功富集。强调了深度和地球化学控制对各种富集的化学自养物种相对分布及其C和H代谢的重大影响。这些石内微生物在回答深层生命的基本问题以及在CO捕获和转化为有用产品方面具有巨大潜力。