Suppr超能文献

相似文献

4
Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes.
Appl Environ Microbiol. 2022 May 24;88(10):e0013222. doi: 10.1128/aem.00132-22. Epub 2022 May 2.
5
Anaerobic Neutrophilic Pyrite Oxidation by a Chemolithoautotrophic Nitrate-Reducing Iron(II)-Oxidizing Culture Enriched from a Fractured Aquifer.
Environ Sci Technol. 2021 Jul 20;55(14):9876-9884. doi: 10.1021/acs.est.1c02049. Epub 2021 Jul 10.
6
Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS.
Appl Environ Microbiol. 2018 Apr 16;84(9). doi: 10.1128/AEM.02173-17. Print 2018 May 1.
7
Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment.
Appl Environ Microbiol. 2016 Sep 30;82(20):6120-6131. doi: 10.1128/AEM.01570-16. Print 2016 Oct 15.
8
Hematite enhances microbial autotrophic nitrate removal in carbonate and phosphate-rich environments by increasing Fe(II) activity.
Sci Total Environ. 2024 Nov 1;949:175002. doi: 10.1016/j.scitotenv.2024.175002. Epub 2024 Jul 23.

引用本文的文献

1
Primary succession of microbial communities in an aquifer from the Covey Hill formation in Quebec, Canada.
Front Microbiol. 2025 May 21;16:1568469. doi: 10.3389/fmicb.2025.1568469. eCollection 2025.
3
Arsenic immobilization and greenhouse gas emission depend on quantity and frequency of nitrogen fertilization in paddy soil.
Heliyon. 2024 Aug 3;10(16):e35706. doi: 10.1016/j.heliyon.2024.e35706. eCollection 2024 Aug 30.
5
Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms.
mSystems. 2023 Dec 21;8(6):e0003823. doi: 10.1128/msystems.00038-23. Epub 2023 Oct 26.
6
Continuous cultivation of the lithoautotrophic nitrate-reducing Fe(II)-oxidizing culture KS in a chemostat bioreactor.
Environ Microbiol Rep. 2023 Aug;15(4):324-334. doi: 10.1111/1758-2229.13149. Epub 2023 Mar 29.
9
Community characteristics of autotrophic CO-fixing bacteria in karst wetland groundwaters with different nitrogen levels.
Front Microbiol. 2022 Aug 15;13:949208. doi: 10.3389/fmicb.2022.949208. eCollection 2022.
10
Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes.
Appl Environ Microbiol. 2022 May 24;88(10):e0013222. doi: 10.1128/aem.00132-22. Epub 2022 May 2.

本文引用的文献

2
An evolving view on biogeochemical cycling of iron.
Nat Rev Microbiol. 2021 Jun;19(6):360-374. doi: 10.1038/s41579-020-00502-7. Epub 2021 Feb 1.
3
4
Microbially mediated coupling of nitrate reduction and Fe(II) oxidation under anoxic conditions.
FEMS Microbiol Ecol. 2019 Apr 1;95(4). doi: 10.1093/femsec/fiz030.
5
Microbial anaerobic Fe(II) oxidation - Ecology, mechanisms and environmental implications.
Environ Microbiol. 2018 Oct;20(10):3462-3483. doi: 10.1111/1462-2920.14328. Epub 2018 Oct 10.
7
Drinking Water Nitrate and Human Health: An Updated Review.
Int J Environ Res Public Health. 2018 Jul 23;15(7):1557. doi: 10.3390/ijerph15071557.
8
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. doi: 10.1093/molbev/msy096.
9
Growth and Population Dynamics of the Anaerobic Fe(II)-Oxidizing and Nitrate-Reducing Enrichment Culture KS.
Appl Environ Microbiol. 2018 Apr 16;84(9). doi: 10.1128/AEM.02173-17. Print 2018 May 1.
10
Anaerobic Reduction of Nitrate to Nitrous Oxide Is Lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens.
Microbes Environ. 2017 Dec 27;32(4):398-401. doi: 10.1264/jsme2.ME17081. Epub 2017 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验