Zhao Fangrui, Yang Dashuai, He Jiahui, Ju Xianli, Ding Youming, Li Xiangpan
Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
Front Oncol. 2022 Nov 24;12:1007538. doi: 10.3389/fonc.2022.1007538. eCollection 2022.
Accurately estimate the prognosis of patients with ECCA is important. However, the TNM system has some limitations, such as low accuracy, exclusion of other factors (e.g., age and sex), and poor performance in predicting individual survival risk. In contrast, a nomogram-based clinical model related to a comprehensive analysis of all risk factors is intuitive and straightforward, facilitating the probabilistic analysis of tumor-related risk factors. Simultaneously, a nomogram can also effectively drive personalized medicine and facilitate clinicians for prognosis prediction. Therefore, we construct a novel practical nomogram and risk stratification system to predict CSS in patients with ECCA.
Accurately estimate the prognosis of patients with extrahepatic cholangiocarcinoma (ECCA) was important, but the existing staging system has limitations. The present study aimed to construct a novel practical nomogram and risk stratification system to predict cancer-specific survival (CSS) in ECCA patients.
3415 patients diagnosed with ECCA between 2010 and 2015 were selected from the SEER database and randomized into a training cohort and a validation cohort at 7:3. The nomogram was identified and calibrated using the C-index, receiver operating characteristic curve (ROC), and calibration plots. Decision curve analysis (DCA), net reclassification index (NRI), integrated discrimination improvement (IDI) and the risk stratification were used to compare the nomogram with the AJCC staging system.
Nine variables were selected to establish the nomogram. The C-index (training cohort:0.785; validation cohort:0.776) and time-dependent AUC (>0.7) showed satisfactory discrimination. The calibration plots also revealed that the nomogram was consistent with the actual observations. The NRI (training cohort: 1-, 2-, and 3-year CSS:0.27, 0.27,0.52; validation cohort:1-,2-,3-year CSS:0.48,0.13,0.34), IDI (training cohort: 1-, 2-, 3-year CSS:0.22,0.18,0.16; validation cohort: 1-,2-,3-year CSS:0.18,0.16,0.17), and DCA indicated that the established nomogram significantly outperformed the AJCC staging system (<0.05) and had better recognition compared to the AJCC staging system.
We developed a practical prognostic nomogram to help clinicians assess the prognosis of patients with ECCA.
准确估计肝外胆管癌(ECCA)患者的预后很重要。然而,TNM系统存在一些局限性,如准确性低、排除其他因素(如年龄和性别)以及在预测个体生存风险方面表现不佳。相比之下,基于列线图的临床模型对所有风险因素进行综合分析,直观且直接,便于对肿瘤相关风险因素进行概率分析。同时,列线图还可以有效地推动个性化医疗,并帮助临床医生进行预后预测。因此,我们构建了一种新型实用列线图和风险分层系统,以预测ECCA患者的癌症特异性生存(CSS)。
准确估计肝外胆管癌(ECCA)患者的预后很重要,但现有的分期系统存在局限性。本研究旨在构建一种新型实用列线图和风险分层系统,以预测ECCA患者的癌症特异性生存(CSS)。
从SEER数据库中选取2010年至2015年间诊断为ECCA的3415例患者,并按7:3随机分为训练队列和验证队列。使用C指数、受试者工作特征曲线(ROC)和校准图对列线图进行识别和校准。决策曲线分析(DCA)、净重新分类指数(NRI)、综合鉴别改善(IDI)和风险分层用于将列线图与AJCC分期系统进行比较。
选择九个变量建立列线图。C指数(训练队列:0.785;验证队列:0.776)和时间依赖性AUC(>0.7)显示出令人满意的鉴别能力。校准图还显示列线图与实际观察结果一致。NRI(训练队列:1年、2年和3年CSS:0.27、0.27、0.52;验证队列:1年、2年、3年CSS:0.48、0.13、0.34)、IDI(训练队列:1年、2年、3年CSS:0.22、0.18、0.16;验证队列:1年、2年、3年CSS:0.18、0.16、0.17)和DCA表明,所建立的列线图明显优于AJCC分期系统(<0.05),与AJCC分期系统相比具有更好的识别能力。
我们开发了一种实用的预后列线图,以帮助临床医生评估ECCA患者的预后。