Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA.
Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
Plant Physiol. 2023 Feb 12;191(2):1084-1101. doi: 10.1093/plphys/kiac559.
Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.
草花序支持每个花序都有一个单一谷物的花结构,其中分枝结构的变化直接影响产量。玉米(Zea mays)RAMOSA1(ZmRA1)转录因子通过对侧生分生组织的确定性起作用,充当花序发育的关键调节剂。在这里,我们表明 RA1 转录本在高粱(Sorghum bicolor,Sb)和绿色小米(Setaria viridis,Sv)花序的分生组织附近的边界区域积累,类似于玉米穗状花序和耳的发育。为了评估玉米、高粱和谷子中同源 RA1 基因和启动子顺式序列的功能保守性,我们利用种间基因转移,并通过在一个共同的自交系背景下定量评估正常分枝的恢复来检测遗传互补性,高度分枝的 ra1-R 突变体。包含内源上下游侧翼序列的 ZmRA1 转基因恢复了 ra1-R 的正常穗状花序和耳状花序分枝。SbRA1 基因座的两个转基因变体在种间表达,模拟为整个内源性串联重复或仅非移码下游拷贝,互补了 ra1-R 的分枝缺陷,并诱导了异常的合轴和分枝模式。SvRA1 基因座缺乏在玉米和高粱中发现的保守上游非编码顺式序列;种间表达 SvRA1 转基因不能或仅部分恢复正常花序形式。然而,通过ZmRA1 上游区域驱动 SvRA1 编码区的表达,恢复了 ra1-R 中正常的花序形态。这些利用种间基因转移的数据表明,RA1 表达的顺式编码时间调节是调节侧生分生组织确定性的关键因素,最终影响草花序结构。