Suppr超能文献

不同的软件处理会影响代谢组学数据的峰提取和代谢途径识别。

Different software processing affects the peak picking and metabolic pathway recognition of metabolomics data.

机构信息

Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangdong 510006, China.

Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

出版信息

J Chromatogr A. 2023 Jan 4;1687:463700. doi: 10.1016/j.chroma.2022.463700. Epub 2022 Dec 5.

Abstract

In untargeted liquid chromatography‒mass spectrometry (LC‒MS) metabolomics studies, data preprocessing and metabolic pathway recognition are crucial for screening important pathways that are disturbed by diseases or restored by drugs. Here, we collected high-resolution mass spectrometry data of serum samples from 221 coronary heart disease (CHD) patients under two different chromatographic columns (BEH amide and C column) and evaluated the three commonly used software programs (XCMS, Progenesis QI, MarkerView) from four aspects (including signal drift, peak number, metabolite annotation and metabolic pathway enrichment). The results showed that the data preprocessed by the three software programs have different degrees of signal drift, but the StatTarget could improve the data quality to meet the data analysis requirement after correction. In addition, XCMS surpassed other software in detection of real chromatographic peaks and Progenesis QI was the best performer in terms of the number of metabolite annotation. XCMS and Progenesis QI showed different performance in pathway enrichment. However, metabolic pathways based on the combination of XCMS and Progenesis QI had a high coincidence with Progenesis QI. In addition, we also reported that C and amide columns were highly complementary and have great potential for cooperation in the context of metabolic pathways. In this study, the effects of different chromatographic columns and software pretreatments on metabolomics data were evaluated based on clinical large cohort samples, which will provide a reference for the metabolomics of clinical samples and guide subsequent mechanistic research.

摘要

在非靶向液相色谱-质谱(LC-MS)代谢组学研究中,数据预处理和代谢途径识别对于筛选受疾病干扰或药物恢复的重要途径至关重要。在这里,我们收集了 221 名冠心病(CHD)患者在两种不同色谱柱(BEH 酰胺柱和 C 柱)下的血清样本的高分辨率质谱数据,并从四个方面(包括信号漂移、峰数、代谢物注释和代谢途径富集)评估了三种常用软件程序(XCMS、Progenesis QI、MarkerView)。结果表明,三种软件程序预处理的数据存在不同程度的信号漂移,但 StatTarget 可以在修正后改善数据质量,以满足数据分析要求。此外,XCMS 在检测真实色谱峰方面优于其他软件,而 Progenesis QI 在代谢物注释数量方面表现最佳。XCMS 和 Progenesis QI 在途径富集方面表现不同。然而,基于 XCMS 和 Progenesis QI 组合的代谢途径具有较高的一致性,与 Progenesis QI 高度吻合。此外,我们还报告了 C 柱和酰胺柱高度互补,在代谢途径方面具有很大的合作潜力。在这项研究中,基于临床大样本队列评估了不同色谱柱和软件预处理对代谢组学数据的影响,为临床样本的代谢组学研究提供了参考,并指导了后续的机制研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验