Penn Image Computing and Science Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States.
Neuroimage Clin. 2023;37:103285. doi: 10.1016/j.nicl.2022.103285. Epub 2022 Dec 7.
In previous studies of patients with frontotemporal lobar degeneration due to tau (FTLD-tau) and FTLD due to TDP (FTLD-TDP), cortical volumes derived from T1-weighted MRI have been used to identify a sequence of volume loss according to arbitrary volumetric criteria. Event-based modeling (EBM) is a probabilistic, generative machine learning model that determines the characteristic sequence of changes, or "events", occurring during disease progression. EBM also estimates an individual patient's disease "stage" by identifying which events have already occurred. In the present study, we use an EBM analysis to derive stages of regional anatomic atrophy in FTLD-tau and FTLD-TDP, and validated these stages against pathologic burden.
Sporadic autopsy-confirmed patients with FTLD-tau (N = 42) and FTLD-TDP (N = 21), and 167 healthy controls with available T1-weighted images were identified. A subset of patients had quantitative digital histopathology of cortex performed at autopsy (FTLD-tau = 30, FTLD-TDP = 17). MRI images were processed, producing regional measures of cortical volumes. K-means clustering was used to find cortical regions with similar amounts of GM volume changes (n = 5 clusters). EBM was used to determine the characteristic sequence of cortical atrophy of identified clusters in autopsy-confirmed FTLD-tau and FTLD-TDP, and estimate each patient's disease stage by cortical volume biomarkers. Linear regressions related pathologic burden to EBM-estimated disease stages.
EBM for cortical volume biomarkers generated statistically robust characteristic sequences of cortical atrophy in each group of patients. Cortical volume-based EBM-estimated disease stage was associated with pathologic burden in FTLD-tau (R2 = 0.16, p = 0.017) and FTLD-TDP (R2 = 0.51, p = 0.0008).
We provide evidence that EBM can identify sequences of pathologically-confirmed cortical atrophy in sporadic FTLD-tau and FTLD-TDP.
在之前针对 tau 引起的额颞叶变性(FTLD-tau)和 TDP 引起的额颞叶变性(FTLD-TDP)患者的研究中,使用 T1 加权 MRI 得出的皮质体积,根据任意体积标准来识别体积损失的序列。基于事件的建模(EBM)是一种概率生成式机器学习模型,用于确定疾病进展过程中发生的特征性变化序列,或“事件”。EBM 还通过识别已经发生的事件来估计个体患者的疾病“阶段”。在本研究中,我们使用 EBM 分析来推导 FTLD-tau 和 FTLD-TDP 的区域性解剖萎缩阶段,并通过病理负担对这些阶段进行验证。
本研究鉴定了散发性尸检确诊的 FTLD-tau(N=42)和 FTLD-TDP(N=21)患者以及 167 名有可用 T1 加权图像的健康对照者。一部分患者进行了尸检时的皮质定量数字组织病理学检查(FTLD-tau=30,FTLD-TDP=17)。对 MRI 图像进行处理,生成皮质体积的区域性指标。使用 K-均值聚类找到具有相似 GM 体积变化量的皮质区域(n=5 个聚类)。EBM 用于确定在尸检确诊的 FTLD-tau 和 FTLD-TDP 中鉴定的聚类的皮质萎缩的特征性序列,并通过皮质体积生物标志物估计每个患者的疾病阶段。线性回归将病理负担与 EBM 估计的疾病阶段相关联。
EBM 针对皮质体积生物标志物在每个患者组中生成了统计学上稳健的皮质萎缩特征性序列。基于皮质体积的 EBM 估计的疾病阶段与 FTLD-tau(R2=0.16,p=0.017)和 FTLD-TDP(R2=0.51,p=0.0008)的病理负担相关。
我们提供的证据表明,EBM 可以识别散发性 FTLD-tau 和 FTLD-TDP 中经过病理证实的皮质萎缩序列。