Suppr超能文献

一种用于正在进行的盲法随机对照试验中安全信号检测的贝叶斯方法。

A Bayesian method for safety signal detection in ongoing blinded randomised controlled trials.

作者信息

Brock Kristian, Chen Chen, Ho Shuyen, Fuller Greg, Woolfolk Jared, McShea Cindy, Penard Nils

机构信息

Centre for Excellence in Statistical Innovation, UCB Pharma, Slough, UK.

Safety Standards, UCB Pharma, Brussels, Belgium.

出版信息

Pharm Stat. 2023 Mar;22(2):378-395. doi: 10.1002/pst.2278. Epub 2022 Dec 12.

Abstract

Sponsors have a responsibility to minimise risk to participants in clinical studies through safety monitoring. The FDA Final Rule for IND Safety Reporting requires routine aggregate safety evaluation, including in ongoing blinded studies. We are interested in estimating the probability that the true adverse event rate in the experimental arm exceeds that in the control arm. We developed a Bayesian approach that specifies an informative meta-analytic predictive prior on the event probability in the control arm and an uninformative prior on that in the experimental arm. We combined these priors with a mixture likelihood that considers each patient in the ongoing blinded study may belong to the experimental or control arm. This allowed us to estimate the quantity of interest without unblinding. We evaluated our method by simulation, pairing scenarios that differed only in whether a safety signal was present or missing, and quantifying the ability of our model to discriminate using signal detection theory. Our approach shows benefit. It detects safety signals more reliably with greater sample sizes and for common rather than rare events. Performance does not deteriorate markedly when historical studies exhibit heterogeneous hazards or non-constant hazards. Our method will allow us to monitor safety signals in ongoing blinded studies with the goal of earlier identification and risk mitigation. Our method could be adapted to use informative priors on both arms or predictive covariates where pertinent data exist. We stress that ongoing safety monitoring should involve a multi-disciplinary team where statistical methods are paired with medical judgement.

摘要

申办者有责任通过安全监测将临床研究中参与者的风险降至最低。美国食品药品监督管理局(FDA)关于研究性新药(IND)安全报告的最终规则要求进行常规的总体安全性评估,包括在正在进行的盲法研究中。我们感兴趣的是估计试验组中真实不良事件发生率超过对照组的概率。我们开发了一种贝叶斯方法,该方法在对照组事件概率上指定了一个信息丰富的荟萃分析预测先验,而在试验组事件概率上指定了一个无信息先验。我们将这些先验与一个混合似然相结合,该似然考虑了正在进行的盲法研究中的每个患者可能属于试验组或对照组。这使我们能够在不揭盲的情况下估计感兴趣的量。我们通过模拟评估了我们的方法,将仅在是否存在安全信号方面不同的情景进行配对,并使用信号检测理论量化我们模型的辨别能力。我们的方法显示出优势。它在样本量更大时以及对于常见而非罕见事件能更可靠地检测到安全信号。当历史研究呈现异质性风险或非恒定风险时,性能不会显著恶化。我们的方法将使我们能够在正在进行的盲法研究中监测安全信号,目标是更早地识别和降低风险。我们的方法可以进行调整,以便在双臂上使用信息丰富的先验或在存在相关数据时使用预测协变量。我们强调,正在进行的安全监测应涉及一个多学科团队,其中统计方法与医学判断相结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验