Suppr超能文献

利用对盲态安全性数据的推断进行贝叶斯潜在风险检测。

Bayesian detection of potential risk using inference on blinded safety data.

作者信息

Mukhopadhyay Saurabh, Waterhouse Brian, Hartford Alan

机构信息

AbbVie Inc., North Chicago, IL, USA.

出版信息

Pharm Stat. 2018 Nov;17(6):823-834. doi: 10.1002/pst.1898. Epub 2018 Aug 30.

Abstract

Safety surveillance is a critical issue for ongoing clinical trials to actively identify and evaluate important safety information. With the new regulatory emphasis on aggregate review of safety, sponsors are faced with the challenge to develop systematic and sound quantitative methods to assess risk from blinded safety data during the pre-approval period of a new therapy. To address this challenge, a novel statistical method is proposed to monitor and detect safety signals with data from blinded ongoing clinical trials, specifically for adverse events of special interest (AESI) when historical data are available to provide background rates. This new method is a two-step Bayesian evaluation of safety signals composed of a screening analysis followed by a sensitivity analysis. This Bayesian modeling framework allows making inference on the relative risk in blinded ongoing clinical trials to detect any safety signal for AESI. The blinded safety teams can use this method to assess the signal and decide if any safety signals should be escalated for unblinded review.

摘要

安全监测是正在进行的临床试验中的一个关键问题,其目的是积极识别和评估重要的安全信息。随着新的监管重点转向对安全性的综合审查,申办者面临着一项挑战,即要开发系统且合理的定量方法,以便在新疗法的批准前阶段从盲态安全数据中评估风险。为应对这一挑战,本文提出了一种新颖的统计方法,用于利用来自正在进行的盲态临床试验的数据监测和检测安全信号,特别是在有历史数据可提供背景发生率时,针对特别关注的不良事件(AESI)。这种新方法是对安全信号进行两步贝叶斯评估,包括筛选分析和敏感性分析。这种贝叶斯建模框架允许在正在进行的盲态临床试验中对相对风险进行推断,以检测AESI的任何安全信号。盲态安全团队可以使用这种方法来评估信号,并决定是否应将任何安全信号升级进行非盲态审查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验