Sun Luyao, Gao Wendong, Liu Jie, Wang Jingjing, Li Li, Yu Haijun, Xu Zhi Ping
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD4072Australia.
Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD4059, Australia.
ACS Appl Mater Interfaces. 2022 Dec 28;14(51):56644-56657. doi: 10.1021/acsami.2c18960. Epub 2022 Dec 14.
Direct hypoxia alleviation and lactate depletion in the tumor microenvironment (TME) are promising for effective cancer therapy but still very challenging. To address this challenge, the current research directly reshapes the TME for inhibiting tumor growth and activating the antitumor immunity using a drug-free nanozyme. Herein, the acid-sensitive nanozymes were constructed based on peroxidized layered double hydroxide nanoparticles for O self-supply and self-boosted lactate depletion. The coloading of partially cross-linked catalase and lactate oxidase enabled the acid-sensitive nanozymes to promote three reactions, that is, (1) HO generation from MgO hydrolysis (30% at pH 7.4 vs 63% at pH 6.0 in 8 h); (2) O generation from HO (12% at pH 7.4 vs 21% at pH 6.0 in 2 h); and (3) lactate depletion by in situ generated O (50% under hypoxia vs 75% under normoxia in 24 h in vitro) in parallel or tandem. These promoted reactions together efficiently induced colon cancer cell apoptosis under the hypoxic conditions, significantly inhibited tumor growth (>95%), and suppressed distant tumor growth upon seven administrations in every 3 days and moreover transformed the immunosuppressive tumor into "hot" one in the colon tumor-bearing mouse model. This is the first example for a nanozyme that supplies sufficient O for hypoxia relief and lactate depletion, thus providing a new insight into drug-free nanomaterial-mediated TME-targeted cancer therapy.
在肿瘤微环境(TME)中直接缓解缺氧和消耗乳酸对有效的癌症治疗很有前景,但仍然极具挑战性。为应对这一挑战,当前研究使用无药物纳米酶直接重塑TME以抑制肿瘤生长并激活抗肿瘤免疫。在此,基于过氧化层状双氢氧化物纳米颗粒构建了酸敏纳米酶,用于氧气自供应和自我促进乳酸消耗。部分交联的过氧化氢酶和乳酸氧化酶的共负载使酸敏纳米酶能够促进三个反应,即:(1)氧化镁水解产生过氧化氢(在pH 7.4时8小时内为30%,在pH 6.0时8小时内为63%);(2)过氧化氢产生氧气(在pH 7.4时2小时内为12%,在pH 6.0时2小时内为21%);以及(3)原位产生的氧气消耗乳酸(体外缺氧条件下24小时内为50%,常氧条件下24小时内为75%),这些反应可并行或串联进行。这些促进的反应共同在缺氧条件下有效诱导结肠癌细胞凋亡,显著抑制肿瘤生长(>95%),并且在每3天给药7次后抑制远处肿瘤生长,此外,在荷瘤小鼠模型中还将免疫抑制性肿瘤转变为“热”肿瘤。这是纳米酶用于供应足够氧气以缓解缺氧和消耗乳酸的首个实例,从而为无药物纳米材料介导的TME靶向癌症治疗提供了新的见解。
ACS Appl Mater Interfaces. 2022-12-28
ACS Appl Mater Interfaces. 2022-4-20
Adv Mater. 2020-8