Suppr超能文献

可降解肿瘤响应性铁掺杂磷酸盐基玻璃纳米酶用于 HO 自供给癌症治疗。

Degradable Tumor-Responsive Iron-Doped Phosphate-Based Glass Nanozyme for HO Self-Supplying Cancer Therapy.

机构信息

Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan 250100, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Apr 20;14(15):17153-17163. doi: 10.1021/acsami.2c02669. Epub 2022 Apr 8.

Abstract

Tumor microenvironment (TME)-responsive chemodynamic therapy (CDT) mediated by nanozymes has been extensively studied both experimentally and theoretically, but the low catalytic efficiency due to insufficient HO in the TME and the poor biodegradability of the nanozymes are still main challenges for clinical translation of nanozymes. Herein, we designed a HO self-supplying nanozyme bearing glucose oxidase (GOX) and polyethyleneimine based on a degradable iron-doped phosphate-based glass (FePBG) nanomimic (FePBG@GOX), which can convert endogenous glucose into toxic hydroxyl radicals. The GOX loaded on the nanozyme can effectively consume glucose in tumor cells to produce a large amount of HO to make up for the lack of HO in the TME. Thereafter, enormous hydroxyl radicals, based on a Fenton reaction of FePBG without any exogenous HO, are generated to induce severe apoptosis of tumor cells. The nanozyme exhibits enhanced in vitro cytotoxicity in a high-glucose medium than in a low-glucose medium, illustrating sufficient generation of HO by GOX. The excellent in vivo antitumor efficacy is manifested by a high tumor growth inhibition ratio of 94.65% in model mice. Excellent intrinsic biodegradability owing to its phosphate-based glass nature is a remarkable advantage of the prepared FePBG nanozyme over most other reported nanozymes. Big concerns about side effects caused by long-time residence in living organisms are eliminated since it degrades not only in an acid medium but also in a neutral physiological environment. Therefore, this novel strategy of the TME-responsive HO self-supplying nanozyme based on an endogenous cascade catalytic reaction opens up an avenue for designing degradable nanozymes in CDT.

摘要

肿瘤微环境(TME)响应的化学动力学治疗(CDT)由纳米酶介导,已经在实验和理论上得到了广泛研究,但是由于 TME 中 HO 的不足和纳米酶的生物降解性差,其催化效率仍然很低,这仍然是纳米酶临床转化的主要挑战。在此,我们设计了一种基于可降解铁掺杂磷酸盐基玻璃(FePBG)纳米模拟物(FePBG@GOX)的具有葡萄糖氧化酶(GOX)和聚乙烯亚胺的 HO 自供给纳米酶,可将内源性葡萄糖转化为有毒的羟基自由基。负载在纳米酶上的 GOX 可以有效地消耗肿瘤细胞中的葡萄糖,产生大量的 HO,以弥补 TME 中 HO 的不足。此后,基于 FePBG 的 Fenton 反应无需任何外源性 HO 就会产生大量的羟基自由基,导致肿瘤细胞严重凋亡。该纳米酶在高葡萄糖培养基中的体外细胞毒性比在低葡萄糖培养基中更强,这表明 GOX 能够充分产生 HO。在模型小鼠中,高达 94.65%的肿瘤生长抑制率表明该纳米酶具有优异的体内抗肿瘤疗效。由于其磷酸盐基玻璃性质,优异的内在生物降解性是该制备的 FePBG 纳米酶相对于大多数其他报道的纳米酶的显著优势。由于其在酸性介质和中性生理环境中都会降解,因此消除了长时间存在于生物体中引起副作用的担忧。因此,这种基于内源性级联催化反应的 TME 响应 HO 自供给纳米酶的新策略为 CDT 中可降解纳米酶的设计开辟了一条新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验