Suppr超能文献

定向进化连接螺旋作为一种有效的策略,用于工程 LysR 型转录调控因子作为全细胞生物传感器。

Directed evolution of linker helix as an efficient strategy for engineering LysR-type transcriptional regulators as whole-cell biosensors.

机构信息

Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; BioDesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.

出版信息

Biosens Bioelectron. 2023 Feb 15;222:115004. doi: 10.1016/j.bios.2022.115004. Epub 2022 Dec 9.

Abstract

Whole-cell biosensors based on transcriptional regulators are powerful tools for rapid measurement, high-throughput screening, dynamic metabolic regulation, etc. To optimize the biosensing performance of transcriptional regulator, its effector-binding domain is commonly engineered. However, this strategy is encumbered by the limitation of diversifying such a large domain and the risk of affecting effector specificity. Molecular dynamics simulation of effector binding of LysG (an LysR-type transcriptional regulator, LTTR) suggests the crucial role of the short linker helix (LH) connecting effector- and DNA-binding domains in protein conformational change. Directed evolution of LH efficiently produced LysG variants with extended operational range and unaltered effector specificity. The whole-cell biosensor based on the best LysG variant outperformed the wild-type LysG in enzyme high-throughput screening and dynamic regulation of l-lysine biosynthetic pathway. LH mutations are suggested to affect DNA binding and facilitate transcriptional activation upon effector binding. LH engineering was also successfully applied to optimize another LTTR BenM for biosensing. Since LTTRs represent the largest family of prokaryotic transcriptional regulators with highly conserved structures, LH engineering is an efficient and universal strategy for development and optimization of whole-cell biosensors.

摘要

基于转录调控因子的全细胞生物传感器是快速测量、高通量筛选、动态代谢调控等的有力工具。为了优化转录调控因子的生物传感性能,通常对其效应物结合结构域进行工程改造。然而,这种策略受到多样化如此大的结构域的限制,并且存在影响效应物特异性的风险。LysG(一种 LysR 型转录调控因子,LTTR)效应物结合的分子动力学模拟表明,连接效应物结合结构域和 DNA 结合结构域的短连接螺旋(LH)在蛋白质构象变化中起着关键作用。LH 的定向进化有效地产生了具有扩展操作范围且不改变效应物特异性的 LysG 变体。基于最佳 LysG 变体的全细胞生物传感器在酶高通量筛选和 l-赖氨酸生物合成途径的动态调控方面优于野生型 LysG。LH 突变被认为会影响 DNA 结合,并在效应物结合时促进转录激活。LH 工程也成功地应用于优化另一种用于生物传感的 LTTR BenM。由于 LTTR 是具有高度保守结构的原核转录调控因子中最大的家族,因此 LH 工程是开发和优化全细胞生物传感器的有效且通用的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验