Opt Express. 2022 Dec 5;30(25):44375-44384. doi: 10.1364/OE.470742.
Hexagonal optical lattices offer a tunable platform to study exotic orbital physics in solid state materials. Here, we present a versatile high-precision scheme to implement a hexagonal optical lattice potential, which is engineered by overlapping two independent triangular optical sublattices generated by laser beams with slightly different wavelengths around 1064 nm. This enables us to precisely control the detailed structure of the hexagonal lattice by adjusting the relative position and the relative lattice depth of the two triangular optical sublattices. Taking advantage of the sensitive dependence of the second Bloch band on small lattice deformations, we propose a strategy to optimize the optical lattice geometry with an extremely high precision. This method can also be extended to other lattice configurations involving more than two sublattices. Our work provides the experimental requirements in the search for novel orbital physics of ultracold atoms, for example, in the flat p-band of the hexagonal optical lattice.
六方光学格子为研究固态材料中的奇异轨道物理提供了一个可调谐的平台。在这里,我们提出了一种通用的高精度方案来实现六方光格子势,该方案通过重叠两个独立的三角光学子格子来实现,这些子格子由波长略为不同的激光束在 1064nm 左右产生。通过调整两个三角光学子格子的相对位置和相对晶格深度,我们可以精确控制六方晶格的详细结构。利用第二布洛赫带对小晶格变形的敏感依赖性,我们提出了一种利用极高精度优化光格子几何形状的策略。这种方法也可以扩展到涉及两个以上子格子的其他格子构型。我们的工作为寻找超冷原子的新型轨道物理提供了实验要求,例如在六方光格子的平 p 带中。