Laboratoire Kastler Brossel, Collège de France, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France.
CENOLI, Faculté des Sciences, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium.
Phys Rev Lett. 2015 Oct 2;115(14):140401. doi: 10.1103/PhysRevLett.115.140401.
We propose a scheme for realizing lattice potentials of subwavelength spacing for ultracold atoms. It is based on spin-dependent optical lattices with a time-periodic modulation. We show that the atomic motion is well described by the combined action of an effective, time-independent lattice of small spacing, together with a micromotion associated with the time modulation. A numerical simulation shows that an atomic gas can be adiabatically loaded into the effective lattice ground state, for time scales comparable to the ones required for adiabatic loading of standard optical lattices. We generalize our scheme to a two-dimensional geometry, leading to Bloch bands with nonzero Chern numbers. The realization of lattices of subwavelength spacing allows for the enhancement of energy scales, which could facilitate the achievement of strongly correlated (topological) states.
我们提出了一种实现亚波长晶格势的方案,用于超冷原子。该方案基于具有时变调制的自旋相关光学晶格。我们表明,原子运动可以很好地由一个有效、时不变的小间距晶格以及与时间调制相关的微运动来描述。数值模拟表明,原子气体可以在与标准光学晶格绝热加载相当的时间尺度内,绝热加载到有效晶格基态。我们将我们的方案推广到二维几何结构,得到了具有非零陈数的布洛赫能带。亚波长晶格的实现可以提高能量尺度,从而有利于实现强关联(拓扑)态。