Opt Express. 2022 Nov 21;30(24):43417-43425. doi: 10.1364/OE.469295.
We report the photoacoustic (PA) response in the terahertz (THz) range by employing a detection process actuated with a silicon cantilever pressure sensor and a carbon-based radiation absorber. The detection relies on the mechanical response of the cantilever, when the volume of the carrier gas inside the PA cell expands with the heat produced by the radiation absorber. The detector interferometrically monitors the movement of the cantilever sensor to generate the PA signal. We selected the absorber material with the highest THz responsivity for detailed studies at 1.4 THz (214 µm wavelength). The observed responsivities of two different radiation absorbers are nearly the same at 1.4 THz and agree within 10% with responsivity values at 0.633 µm wavelength. The results demonstrate the potential of covering with a single PA detector a broad spectral range with approximately constant responsivity, large dynamic range, and high damage threshold.
我们报告了一种在太赫兹(THz)范围内的光声(PA)响应,该响应采用了由硅悬臂梁压力传感器和基于碳的辐射吸收器驱动的检测过程。当 PA 池内的载气体积因辐射吸收器产生的热量而膨胀时,检测依赖于悬臂梁的机械响应。探测器通过干涉测量法监测悬臂梁传感器的运动以产生 PA 信号。我们选择了在 1.4 THz(214 µm 波长)下具有最高 THz 响应率的吸收体材料进行详细研究。在 1.4 THz 下,两种不同辐射吸收体的观察到的响应率几乎相同,并且与 0.633 µm 波长下的响应率值相差在 10%以内。结果表明,通过单个 PA 探测器覆盖具有近似恒定响应率、大动态范围和高损伤阈值的宽光谱范围是具有潜力的。