Suppr超能文献

基于硅悬臂梁的高灵敏度微型双共振光声传感器用于痕量气体传感。

High-sensitivity miniature dual-resonance photoacoustic sensor based on silicon cantilever beam for trace gas sensing.

作者信息

Wu Guojie, Gong Zhenfeng, Ma Junsheng, Li Haie, Guo Min, Chen Ke, Peng Wei, Yu Qingxu, Mei Liang

机构信息

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian116024, Liaoning, China.

School of Physics, Dalian University of Technology, Dalian 116024, Liaoning, China.

出版信息

Photoacoustics. 2022 Jul 16;27:100386. doi: 10.1016/j.pacs.2022.100386. eCollection 2022 Sep.

Abstract

We report a miniature dual-resonance photoacoustic (PA) sensor, mainly consisting of a small resonant T-type PA cell and an integrated sensor probe based on a silicon cantilever beam. The resonance frequency of the miniature T-type PA cell is matched with the first-order natural frequency of the cantilever beam to achieve double resonance of the acoustic signal. The volume of the designed T-type PA cell is only about 2.26 cubic centimeters. A PA spectroscopy (PAS) system, employing the dual-resonance photoacoustic (PA) sensor as the prober and a high-speed spectrometer as the demodulator, has been implemented for high-sensitivity methane sensing. The sensitivity and the minimum detection limit can reach up to 2.0 pm/ppm and 35.6 parts-per-billion, respectively, with an averaging time of 100 s. The promising performance demonstrated a great potential of employing the reported sensor for high-sensitivity gas sensing in sub cubic centimeter-level spaces.

摘要

我们报道了一种微型双共振光声(PA)传感器,主要由一个小型共振T型PA池和一个基于硅悬臂梁的集成传感器探头组成。微型T型PA池的共振频率与悬臂梁的一阶固有频率相匹配,以实现声信号的双共振。所设计的T型PA池体积仅约2.26立方厘米。已实现一种光声光谱(PAS)系统,该系统采用双共振光声(PA)传感器作为探测器,高速光谱仪作为解调器,用于高灵敏度甲烷传感。平均时间为100秒时,灵敏度和最低检测限分别可达2.0 pm/ppm和35.6 ppb。该优异性能表明,所报道的传感器在亚立方厘米级空间进行高灵敏度气体传感方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ab5/9441259/0b4f21922cc7/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验