Suppr超能文献

美国黑熊颜色变异的遗传结构和进化。

Genetic architecture and evolution of color variation in American black bears.

机构信息

Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.

Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.

出版信息

Curr Biol. 2023 Jan 9;33(1):86-97.e10. doi: 10.1016/j.cub.2022.11.042. Epub 2022 Dec 16.

Abstract

Color variation is a frequent evolutionary substrate for camouflage in small mammals, but the underlying genetics and evolutionary forces that drive color variation in natural populations of large mammals are mostly unexplained. The American black bear, Ursus americanus (U. americanus), exhibits a range of colors including the cinnamon morph, which has a similar color to the brown bear, U. arctos, and is found at high frequency in the American southwest. Reflectance and chemical melanin measurements showed little distinction between U. arctos and cinnamon U. americanus individuals. We used a genome-wide association for hair color as a quantitative trait in 151 U. americanus individuals and identified a single major locus (p < 10). Additional genomic and functional studies identified a missense alteration (R153C) in Tyrosinase-related protein 1 (TYRP1) that likely affects binding of the zinc cofactor, impairs protein localization, and results in decreased pigment production. Population genetic analyses and demographic modeling indicated that the R153C variant arose 9.36 kya in a southwestern population where it likely provided a selective advantage, spreading both northwards and eastwards by gene flow. A different TYRP1 allele, R114C, contributes to the characteristic brown color of U. arctos but is not fixed across the range.

摘要

颜色变异是小型哺乳动物中伪装的常见进化基础,但导致大型哺乳动物自然种群中颜色变异的潜在遗传学和进化力量在很大程度上仍未得到解释。美洲黑熊(Ursus americanus)表现出一系列颜色,包括肉桂色形态,其颜色与棕熊(U. arctos)相似,在美西南地区高频出现。反射率和化学黑色素测量结果表明,U. arctos 和肉桂色 U. americanus 个体之间几乎没有区别。我们使用毛发颜色的全基因组关联作为 151 只 U. americanus 个体的数量性状,并确定了一个主要位点(p < 10)。额外的基因组和功能研究鉴定出酪氨酶相关蛋白 1(TYRP1)中的错义改变(R153C),可能影响锌辅因子的结合,损害蛋白质定位,并导致色素生成减少。种群遗传分析和人口统计模型表明,R153C 变体在西南种群中于 9.36 kya 出现,在那里它可能提供了选择优势,通过基因流向北和向东传播。另一个不同的 TYRP1 等位基因 R114C 导致 U. arctos 的典型棕色,但在整个范围内并未固定。

相似文献

1
Genetic architecture and evolution of color variation in American black bears.
Curr Biol. 2023 Jan 9;33(1):86-97.e10. doi: 10.1016/j.cub.2022.11.042. Epub 2022 Dec 16.
3
Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.
PLoS Genet. 2013;9(3):e1003345. doi: 10.1371/journal.pgen.1003345. Epub 2013 Mar 14.
4
Bear essentials.
Trends Genet. 2023 Apr;39(4):233-234. doi: 10.1016/j.tig.2023.02.011. Epub 2023 Feb 23.
6
Inheritance and population structure of the white-phased "Kermode" black bear.
Curr Biol. 2001 Sep 18;11(18):1468-72. doi: 10.1016/s0960-9822(01)00448-1.
7
Canine adenovirus type 1 (CAdV-1) in free-ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population?
Transbound Emerg Dis. 2018 Dec;65(6):2049-2056. doi: 10.1111/tbed.13013. Epub 2018 Sep 20.
8
Genetic relationships of extant brown bears (Ursus arctos) and polar bears (Ursus maritimus).
J Hered. 2012 Nov-Dec;103(6):873-81. doi: 10.1093/jhered/ess090. Epub 2012 Nov 1.
10

引用本文的文献

2
A genome assembly of the American black bear, Ursus americanus, from California.
J Hered. 2024 Aug 20;115(5):498-506. doi: 10.1093/jhered/esae037.
3
Regulatory gene network for coffee-like color morph of TYRP1 mutant of oujiang color common carp.
BMC Genomics. 2024 Jul 2;25(1):659. doi: 10.1186/s12864-024-10550-5.
4
Metalation and activation of Zn enzymes via early secretory pathway-resident ZNT proteins.
Biophys Rev (Melville). 2023 Dec 8;4(4):041302. doi: 10.1063/5.0176048. eCollection 2023 Dec.
5
Taking a color photo: A homozygous 25-bp deletion in may cause brown-and-white coat color in giant pandas.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2317430121. doi: 10.1073/pnas.2317430121. Epub 2024 Mar 4.
6
The Hoof Color of Australian White Sheep Is Associated with Genetic Variation of the Gene.
Animals (Basel). 2023 Oct 15;13(20):3218. doi: 10.3390/ani13203218.
7
An allelic series at the EDNRB2 locus controls diverse piebalding patterns in the domestic pigeon.
PLoS Genet. 2023 Oct 20;19(10):e1010880. doi: 10.1371/journal.pgen.1010880. eCollection 2023 Oct.

本文引用的文献

1
selscan 2.0: scanning for sweeps in unphased data.
Bioinformatics. 2024 Jan 2;40(1). doi: 10.1093/bioinformatics/btae006.
2
Ablation of Proton/Glucose Exporter SLC45A2 Enhances Melanosomal Glycolysis to Inhibit Melanin Biosynthesis and Promote Melanoma Metastasis.
J Invest Dermatol. 2022 Oct;142(10):2744-2755.e9. doi: 10.1016/j.jid.2022.04.008. Epub 2022 Apr 23.
3
The giant panda is cryptic.
Sci Rep. 2021 Oct 28;11(1):21287. doi: 10.1038/s41598-021-00742-4.
6
Environmental genomics of Late Pleistocene black bears and giant short-faced bears.
Curr Biol. 2021 Jun 21;31(12):2728-2736.e8. doi: 10.1016/j.cub.2021.04.027. Epub 2021 Apr 19.
7
Efficient phasing and imputation of low-coverage sequencing data using large reference panels.
Nat Genet. 2021 Jan;53(1):120-126. doi: 10.1038/s41588-020-00756-0. Epub 2021 Jan 7.
9
The mutational constraint spectrum quantified from variation in 141,456 humans.
Nature. 2020 May;581(7809):434-443. doi: 10.1038/s41586-020-2308-7. Epub 2020 May 27.
10
Tracking human population structure through time from whole genome sequences.
PLoS Genet. 2020 Mar 9;16(3):e1008552. doi: 10.1371/journal.pgen.1008552. eCollection 2020 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验