Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan.
DeepEyeVision, Inc, Jichi Medical University, Shimotsuke-Shi, Tochigi, 329-0498, Japan.
Sci Rep. 2022 Dec 17;12(1):21826. doi: 10.1038/s41598-022-25894-9.
We herein propose a PraNet-based deep-learning model for estimating the size of non-perfusion area (NPA) in pseudo-color fundus photos from an ultra-wide-field (UWF) image. We trained the model with focal loss and weighted binary cross-entropy loss to deal with the class-imbalanced dataset, and optimized hyperparameters in order to minimize validation loss. As expected, the resultant PraNet-based deep-learning model outperformed previously published methods. For verification, we used UWF fundus images with NPA and used Bland-Altman plots to compare estimated NPA with the ground truth in FA, which demonstrated that bias between the eNPA and ground truth was smaller than 10% of the confidence limits zone and that the number of outliers was less than 10% of observed paired images. The accuracy of the model was also tested on an external dataset from another institution, which confirmed the generalization of the model. For validation, we employed a contingency table for ROC analysis to judge the sensitivity and specificity of the estimated-NPA (eNPA). The results demonstrated that the sensitivity and specificity ranged from 83.3-87.0% and 79.3-85.7%, respectively. In conclusion, we developed an AI model capable of estimating NPA size from only an UWF image without angiography using PraNet-based deep learning. This is a potentially useful tool in monitoring eyes with ischemic retinal diseases.
我们在此提出了一种基于 PraNet 的深度学习模型,用于从超广角 (UWF) 图像中的伪彩眼底照片估计无灌注区 (NPA) 的大小。我们使用焦点损失和加权二进制交叉熵损失来训练模型,以处理类别不平衡数据集,并优化超参数以最小化验证损失。不出所料,基于 PraNet 的深度学习模型的性能优于之前发表的方法。为了验证,我们使用了具有 NPA 的 UWF 眼底图像,并使用 Bland-Altman 图将估计的 NPA 与 FA 中的真实值进行比较,结果表明 eNPA 与真实值之间的偏差小于置信限区间的 10%,并且异常值的数量小于观察到的配对图像的 10%。我们还在另一个机构的外部数据集上测试了模型的准确性,这证实了模型的泛化能力。为了验证,我们使用 ROC 分析的列联表来判断估计的 NPA (eNPA) 的灵敏度和特异性。结果表明,灵敏度和特异性分别为 83.3-87.0%和 79.3-85.7%。总之,我们开发了一种人工智能模型,能够仅使用基于 PraNet 的深度学习从 UWF 图像而无需血管造影来估计 NPA 大小。这是监测缺血性视网膜疾病眼睛的一种潜在有用的工具。