Suppr超能文献

一种新颖的深度学习条件生成对抗网络,用于从眼底照片生成血管造影图像。

A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs.

机构信息

Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, 89557, USA.

Department of Computer Science, Deakin University, Melbourne, VIC, 3217, Australia.

出版信息

Sci Rep. 2020 Dec 9;10(1):21580. doi: 10.1038/s41598-020-78696-2.

Abstract

Fluorescein angiography (FA) is a procedure used to image the vascular structure of the retina and requires the insertion of an exogenous dye with potential adverse side effects. Currently, there is only one alternative non-invasive system based on Optical coherence tomography (OCT) technology, called OCT angiography (OCTA), capable of visualizing retina vasculature. However, due to its cost and limited view, OCTA technology is not widely used. Retinal fundus photography is a safe imaging technique used for capturing the overall structure of the retina. In order to visualize retinal vasculature without the need for FA and in a cost-effective, non-invasive, and accurate manner, we propose a deep learning conditional generative adversarial network (GAN) capable of producing FA images from fundus photographs. The proposed GAN produces anatomically accurate angiograms, with similar fidelity to FA images, and significantly outperforms two other state-of-the-art generative algorithms ([Formula: see text] and [Formula: see text]). Furthermore, evaluations by experts shows that our proposed model produces such high quality FA images that are indistinguishable from real angiograms. Our model as the first application of artificial intelligence and deep learning to medical image translation, by employing a theoretical framework capable of establishing a shared feature-space between two domains (i.e. funduscopy and fluorescein angiography) provides an unrivaled way for the translation of images from one domain to the other.

摘要

荧光素血管造影(FA)是一种用于成像视网膜血管结构的程序,需要插入具有潜在不良反应的外源性染料。目前,只有一种基于光学相干断层扫描(OCT)技术的替代非侵入性系统,称为 OCT 血管造影(OCTA),能够可视化视网膜血管。然而,由于其成本和有限的视野,OCTA 技术并未得到广泛应用。眼底摄影是一种安全的成像技术,用于捕捉视网膜的整体结构。为了在不需要 FA 的情况下以经济高效、非侵入性和准确的方式可视化视网膜血管,我们提出了一种能够从眼底照片生成 FA 图像的深度学习条件生成对抗网络(GAN)。所提出的 GAN 生成解剖学上准确的血管造影图,与 FA 图像具有相似的保真度,并明显优于另外两种最先进的生成算法([Formula: see text] 和 [Formula: see text])。此外,专家评估表明,我们提出的模型生成的 FA 图像质量如此之高,以至于与真实血管造影图无法区分。我们的模型作为人工智能和深度学习在医学图像翻译中的首次应用,通过采用一种能够在两个域(即眼底镜和荧光素血管造影)之间建立共享特征空间的理论框架,为从一个域到另一个域的图像翻译提供了无与伦比的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/156b/7725777/c26022ed83b8/41598_2020_78696_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验