Suppr超能文献

氨基硅烷分子层实现离子向可逆锌电化学的连续捕获-扩散-沉积。

Aminosilane Molecular Layer Enables Successive Capture-Diffusion-Deposition of Ions toward Reversible Zinc Electrochemistry.

作者信息

Wang Lu, Wang Zhenxing, Li Huan, Han Daliang, Li Xing, Wang Feifei, Gao Jiachen, Geng Chuannan, Zhang Zhicheng, Cui Changjun, Weng Zhe, Yang Chunpeng, Loh Kian Ping, Yang Quan-Hong

机构信息

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.

Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.

出版信息

ACS Nano. 2023 Jan 10;17(1):668-677. doi: 10.1021/acsnano.2c09977. Epub 2022 Dec 19.

Abstract

The aqueous zinc (Zn) battery is a safe and eco-friendly energy-storage system. However, the use of Zn metal anodes is impeded by uncontrolled Zn deposition behavior. Herein, we regulate the Zn-ion deposition process for dendrite-free Zn metal anodes using an aminosilane molecular layer with high zincophilic sites and narrow molecule channels. The aminosilane molecular layer causes Zn ions to undergo consecutive processes including being captured by the amine functional groups of aminosilane and diffusing through narrow intermolecular channels before electroplating, which induces partial dehydration of hydrated Zn ions and uniform Zn ion flux, promoting reversible Zn stripping/plating. Through this molecule-induced capture-diffusion-deposition procedure of Zn ions, smooth and compact Zn electrodeposited layers are obtained. Hence, the aminosilane-modified Zn anode has high Coulombic efficiency (∼99.5%), long lifespan (∼3000 h), and high capacity retention in full cells (88.4% for 600 cycles). This strategy not only has great potential for achieving dendrite-free Zn anodes in practical Zn batteries but also suggests an interface-modification principle at the molecular level for other alternative metallic anodes.

摘要

水系锌(Zn)电池是一种安全且环保的储能系统。然而,锌金属阳极的使用受到不受控制的锌沉积行为的阻碍。在此,我们使用具有高亲锌位点和狭窄分子通道的氨基硅烷分子层来调节锌离子的沉积过程,以制备无枝晶的锌金属阳极。氨基硅烷分子层使锌离子经历一系列连续过程,包括被氨基硅烷的胺官能团捕获并在电镀前通过狭窄的分子间通道扩散,这会导致水合锌离子部分脱水并使锌离子通量均匀,从而促进锌的可逆脱溶/电镀。通过这种分子诱导的锌离子捕获-扩散-沉积过程,获得了光滑致密的锌电沉积层。因此,氨基硅烷改性的锌阳极具有高库仑效率(约99.5%)、长寿命(约3000小时)以及在全电池中具有高容量保持率(600次循环后为88.4%)。该策略不仅在实际锌电池中实现无枝晶锌阳极方面具有巨大潜力,还为其他替代金属阳极提出了分子水平的界面改性原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验