Suppr超能文献

肾小球在海洋环境中的演化及其对陆地脊椎动物肾功能的影响。

Evolution of the glomerulus in a marine environment and its implications for renal function in terrestrial vertebrates.

作者信息

Evans Roger G

机构信息

Cardiovascular Disease Program, Biomedicine Discovery Institute, and Department of Physiology, Monash University, Melbourne, Victoria, Australia.

Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2023 Feb 1;324(2):R143-R151. doi: 10.1152/ajpregu.00210.2022. Epub 2022 Dec 19.

Abstract

Nearly a century ago, Homer Smith proposed that the glomerulus evolved to meet the challenge of excretion of water in freshwater vertebrates. This hypothesis has been repeatedly restated in the nephrology and renal physiology literature, even though we now know that vertebrates evolved and diversified in marine (saltwater) environments. A more likely explanation is that the vertebrate glomerulus evolved from the meta-nephridium of marine invertebrates, with the driving force for ultrafiltration being facilitated by the apposition of the filtration barrier to the vasculature (in vertebrates) rather than the coelom (in invertebrates) and the development of a true heart and the more complex vertebrate vascular system. In turn, glomerular filtration aided individual regulation of divalent ions like magnesium, calcium, and sulfate compatible with the function of cardiac and skeletal muscle required for mobile predators. The metabolic cost, imposed by reabsorption of the small amounts of sodium required to drive secretion of these over-abundant divalent ions, was small. This innovation, developed in a salt-water environment, provided a preadaptation for life in freshwater, in which the glomerulus was co-opted to facilitate water excretion, albeit with the additional metabolic demand imposed by the need to reabsorb the majority of filtered sodium. The evolution of the glomerulus in saltwater also provided preadaptation for terrestrial life, where the imperative is conservation of both water and electrolytes. The historical contingencies of this scenario may explain why the mammalian kidney is so metabolically inefficient, with ∼80% of oxygen consumption being used to drive reabsorption of filtered sodium.

摘要

近一个世纪前,荷马·史密斯提出肾小球的进化是为了应对淡水脊椎动物排水的挑战。尽管我们现在知道脊椎动物是在海洋(咸水)环境中进化和多样化的,但这一假设在肾脏病学和肾脏生理学文献中仍被反复提及。一个更有可能的解释是,脊椎动物的肾小球是从海洋无脊椎动物的后肾进化而来的,超滤的驱动力是由于过滤屏障与脉管系统(在脊椎动物中)而非体腔(在无脊椎动物中)的并置,以及真正心脏和更复杂的脊椎动物血管系统的发育。反过来,肾小球滤过有助于对镁、钙和硫酸盐等二价离子进行个体调节,这与移动捕食者所需的心肌和骨骼肌功能相适应。重吸收驱动这些过量二价离子分泌所需的少量钠所带来的代谢成本很小。这一在咸水环境中发展起来的创新为淡水生活提供了一种预适应,在淡水中,肾小球被用来促进排水,尽管重吸收大部分滤过钠的需求带来了额外的代谢需求。肾小球在咸水中的进化也为陆地生活提供了预适应,在陆地上,当务之急是节约用水和电解质。这种情况的历史偶然性可能解释了为什么哺乳动物的肾脏在代谢上如此低效,约80%的氧气消耗用于驱动滤过钠的重吸收。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验