Suppr超能文献

管状假说在肾单位滤过和糖尿病肾病中的作用。

The tubular hypothesis of nephron filtration and diabetic kidney disease.

机构信息

Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.

Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.

出版信息

Nat Rev Nephrol. 2020 Jun;16(6):317-336. doi: 10.1038/s41581-020-0256-y. Epub 2020 Mar 9.

Abstract

Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium-glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium-glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium-glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.

摘要

肾脏大小和肾小球滤过率(GFR)通常随着糖尿病的发生而增加,而升高的 GFR 是糖尿病肾病发展的一个风险因素。高滤过主要是对从肾小管传递到肾小球的信号作出反应:肾小球滤过液中高水平的葡萄糖驱动近端肾小管中 SGLT2 和 SGLT1 对葡萄糖和钠的重吸收增加。氯离子和水的被动重吸收也增加。近端重吸收的整体能力通过近端小管的生长增强,近端小管(与钠-葡萄糖共转运蛋白一起)进一步限制尿糖损失。钠和氯的重吸收引起致密斑的管球反馈,从而增加 GFR。此外,致密斑细胞上的 SGLT1 对葡萄糖的转运触发一氧化氮的产生,这也有助于肾小球高滤过。尽管高滤过恢复了钠和氯的排泄,但它给滤过屏障带来了额外的物理压力,并增加了驱动重吸收的氧气需求。肾小管生长与衰老样分子特征的发展有关,为炎症和纤维化奠定了基础。SGLT2 抑制剂可减弱钠和葡萄糖的近端重吸收,使管球反馈信号正常化,并减轻高滤过。这种以肾小管为中心的糖尿病肾脏生理学模型预测了 SGLT2 抑制剂对肾脏硬终点的有益作用,这在大规模临床试验中得到了证实。

相似文献

1
The tubular hypothesis of nephron filtration and diabetic kidney disease.
Nat Rev Nephrol. 2020 Jun;16(6):317-336. doi: 10.1038/s41581-020-0256-y. Epub 2020 Mar 9.
2
Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
Am J Cardiol. 2019 Dec 15;124 Suppl 1(Suppl 1):S28-S35. doi: 10.1016/j.amjcard.2019.10.027.
4
Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
Am J Kidney Dis. 2014 Jul;64(1):16-24. doi: 10.1053/j.ajkd.2014.02.010. Epub 2014 Mar 25.
7
Effect of renal tubule-specific knockdown of the Na/H exchanger NHE3 in Akita diabetic mice.
Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F419-F434. doi: 10.1152/ajprenal.00497.2018. Epub 2019 Jun 5.
8
Macula Densa SGLT1-NOS1-Tubuloglomerular Feedback Pathway, a New Mechanism for Glomerular Hyperfiltration during Hyperglycemia.
J Am Soc Nephrol. 2019 Apr;30(4):578-593. doi: 10.1681/ASN.2018080844. Epub 2019 Mar 13.
9
Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption.
J Am Soc Nephrol. 1999 Dec;10(12):2569-76. doi: 10.1681/ASN.V10122569.
10

引用本文的文献

1
Shenyuan granules improve cellular senescence through Klotho-mediated p16/p21 signaling pathway in diabetic kidney disease.
Front Med (Lausanne). 2025 Jul 31;12:1627412. doi: 10.3389/fmed.2025.1627412. eCollection 2025.
2
Notch signaling in diabetic kidney disease: recent progress.
Front Endocrinol (Lausanne). 2025 Jul 31;16:1537769. doi: 10.3389/fendo.2025.1537769. eCollection 2025.
4
Empagliflozin alleviates type 2 diabetic renal fibrosis by inhibiting SLC7A7-mediated ferroptosis.
Diabetol Metab Syndr. 2025 Aug 13;17(1):329. doi: 10.1186/s13098-025-01902-6.
5
Factors that influence the Na/K-ATPase signaling and function.
Front Pharmacol. 2025 Jul 29;16:1639859. doi: 10.3389/fphar.2025.1639859. eCollection 2025.
6
Understanding ureteropelvic junction obstruction: how far have we come?
Front Urol. 2023 Apr 19;3:1154740. doi: 10.3389/fruro.2023.1154740. eCollection 2023.

本文引用的文献

1
Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
Am J Cardiol. 2019 Dec 15;124 Suppl 1(Suppl 1):S28-S35. doi: 10.1016/j.amjcard.2019.10.027.
2
Preventing and Treating Heart Failure with Sodium-Glucose Co-Transporter 2 Inhibitors.
Am J Cardiol. 2019 Dec 15;124 Suppl 1:S20-S27. doi: 10.1016/j.amjcard.2019.10.026.
4
Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen.
J Am Soc Nephrol. 2019 Oct;30(10):2000-2016. doi: 10.1681/ASN.2019030218. Epub 2019 Sep 19.
5
Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction.
N Engl J Med. 2019 Nov 21;381(21):1995-2008. doi: 10.1056/NEJMoa1911303. Epub 2019 Sep 19.
6
Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy.
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F767-F780. doi: 10.1152/ajprenal.00565.2018. Epub 2019 Aug 7.
7
Effect of renal tubule-specific knockdown of the Na/H exchanger NHE3 in Akita diabetic mice.
Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F419-F434. doi: 10.1152/ajprenal.00497.2018. Epub 2019 Jun 5.
9
Gene deletion of the Na-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion.
Am J Physiol Renal Physiol. 2019 Jun 1;316(6):F1201-F1210. doi: 10.1152/ajprenal.00111.2019. Epub 2019 Apr 17.
10
Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy.
N Engl J Med. 2019 Jun 13;380(24):2295-2306. doi: 10.1056/NEJMoa1811744. Epub 2019 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验