Department of Biological Sciences, Boise State University, Boise, ID, United States.
PeerJ. 2022 Dec 14;10:e14509. doi: 10.7717/peerj.14509. eCollection 2022.
Here we detail the use of an R package, 'EcoCountHelper', and an associated analytical pipeline aimed at making generalized linear mixed-effects model (GLMM)-based analysis of ecological count data more accessible. We recommend a GLMM-based analysis workflow that allows the user to (1) employ selection of distributional forms (Poisson negative binomial) and zero-inflation (ZIP and ZINB, respectively) using AIC and variance-mean plots, (2) examine models for goodness-of-fit using simulated residual diagnostics, (3) interpret model results easy to understand outputs of changes in predicted responses, and (4) compare the magnitude of predictor variable effects effects plots. Our package uses a series of easy-to-use functions that can accept both wide- and long-form multi-taxa count data without the need for programming experience. To demonstrate the utility of this approach, we use our package to model acoustic bat activity data relative to multiple landscape characteristics in a protected area (Grand Teton National Park), which is threatened by encroaching disease-white nose syndrome. Global threats to bat conservation such as disease and deforestation have prompted extensive research to better understand bat ecology. Notwithstanding these efforts, managers operating on lands crucial to the persistence of bat populations are often equipped with too little information regarding local bat activity to make informed land-management decisions. In our case study in the Tetons, we found that an increased prevalence of porous buildings increases activity levels of and ; activity decreases as distance to water increases; and activity increases with the amount of forested area. By using GLMMs in tandem with 'EcoCountHelper', managers without advanced programmatic or statistical expertise can assess the effects of landscape characteristics on wildlife in a statistically-robust framework.
在这里,我们详细介绍了一个 R 包“EcoCountHelper”和一个相关的分析流程,旨在使基于广义线性混合效应模型(GLMM)的生态计数数据分析更容易使用。我们建议采用基于 GLMM 的分析工作流程,使用户能够(1)使用 AIC 和方差-均值图选择分布形式(泊松负二项式)和零膨胀(ZIP 和 ZINB),(2)使用模拟残差诊断检查模型拟合度,(3)解释模型结果易于理解预测响应的变化,(4)比较预测变量效应的大小效应图。我们的包使用了一系列易于使用的函数,可以接受宽格式和长格式的多分类群计数数据,而无需编程经验。为了演示这种方法的实用性,我们使用我们的包来模拟受白鼻综合征侵袭的保护区(大提顿国家公园)内与多种景观特征相关的声学蝙蝠活动数据。全球范围内对蝙蝠保护的威胁,如疾病和森林砍伐,促使人们进行了广泛的研究,以更好地了解蝙蝠生态学。尽管做出了这些努力,但对维持蝙蝠种群至关重要的土地的管理者在了解当地蝙蝠活动方面通常信息不足,无法做出明智的土地管理决策。在我们在提顿的案例研究中,我们发现多孔建筑的增加会增加 和 的活动水平;随着与水的距离增加, 的活动减少;随着森林面积的增加, 的活动增加。通过在“EcoCountHelper”中同时使用 GLMM,没有高级编程或统计专业知识的管理者可以在统计上稳健的框架中评估景观特征对野生动物的影响。