Jennings Mariela V, Lee Hyunjoon, Rocha Daniel B, Bianchi Sevim B, Coombes Brandon J, Crist Richard C, Faucon Annika B, Hu Yirui, Kember Rachel L, Mallard Travis T, Niarchou Maria, Poulsen Melissa N, Straub Peter, Urman Richard D, Walsh Colin G, Davis Lea K, Smoller Jordan W, Troiani Vanessa, Sanchez-Roige Sandra
Department of Psychiatry, University of California San Diego, La Jolla, California, USA.
Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
Complex Psychiatry. 2022 Sep;8(1-2):47-55. doi: 10.1159/000525313. Epub 2022 Jun 2.
Opioid use disorders (OUDs) constitute a major public health issue, and we urgently need alternative methods for characterizing risk for OUD. Electronic health records (EHRs) are useful tools for understanding complex medical phenotypes but have been underutilized for OUD because of challenges related to underdiagnosis, binary diagnostic frameworks, and minimally characterized reference groups. As a first step in addressing these challenges, a new paradigm is warranted that characterizes risk for opioid prescription misuse on a continuous scale of severity, i.e., as a continuum.
Across sites within the PsycheMERGE network, we extracted prescription opioid data and diagnoses that co-occur with OUD (including psychiatric and substance use disorders, pain-related diagnoses, HIV, and hepatitis C) for over 2.6 million patients across three health registries (Vanderbilt University Medical Center, Mass General Brigham, Geisinger) between 2005 and 2018. We defined three groups based on levels of opioid exposure: no prescriptions, minimal exposure, and chronic exposure and then compared the comorbidity profiles of these groups to the full registries and to those with OUD diagnostic codes.
Our results confirm that EHR data reflects known higher prevalence of substance use disorders, psychiatric disorders, medical, and pain diagnoses in patients with OUD diagnoses and chronic opioid use. Comorbidity profiles that distinguish opioid exposure are strikingly consistent across large health systems, indicating the phenotypes described in this new quantitative framework are robust to health systems differences.
This work indicates that EHR prescription opioid data can serve as a platform to characterize complex risk markers for OUD using existing data.
阿片类药物使用障碍(OUDs)是一个重大的公共卫生问题,我们迫切需要其他方法来表征OUD的风险。电子健康记录(EHRs)是理解复杂医学表型的有用工具,但由于与诊断不足、二元诊断框架以及特征描述最少的参考组相关的挑战,在OUD研究中未得到充分利用。作为应对这些挑战的第一步,需要一种新的范式,即在连续的严重程度范围内表征阿片类药物处方滥用的风险,即作为一个连续体。
在PsycheMERGE网络的各个站点中,我们从2005年至2018年期间三个健康登记处(范德比尔特大学医学中心、麻省总医院布莱根分院、盖辛格医疗系统)的超过260万患者中提取了处方阿片类药物数据以及与OUD同时出现的诊断(包括精神疾病和物质使用障碍、疼痛相关诊断、艾滋病毒和丙型肝炎)。我们根据阿片类药物暴露水平定义了三组:无处方、低暴露和长期暴露,然后将这些组的合并症概况与整个登记处以及有OUD诊断代码的组进行比较。
我们的结果证实,EHR数据反映了在有OUD诊断和长期使用阿片类药物的患者中已知的更高的物质使用障碍、精神疾病、医疗和疼痛诊断患病率。区分阿片类药物暴露的合并症概况在大型医疗系统中惊人地一致,表明这个新的定量框架中描述的表型对医疗系统差异具有鲁棒性。
这项工作表明,EHR处方阿片类药物数据可以作为一个平台,利用现有数据来表征OUD的复杂风险标志物。