Suppr超能文献

两种数据驱动方法识别阿片类药物使用问题谱:慢性疼痛队列中的一项试点研究。

Two data-driven approaches to identifying the spectrum of problematic opioid use: A pilot study within a chronic pain cohort.

机构信息

Vanderbilt University School of Nursing, 461 21st Avenue South, Nashville, TN 37240, USA.

Vanderbilt University School of Nursing, 461 21st Avenue South, Nashville, TN 37240, USA; Vanderbilt University, Department of Biomedical Informatics, 2525 West End Ave #1475, Nashville, TN 37203, USA.

出版信息

Int J Med Inform. 2021 Dec;156:104621. doi: 10.1016/j.ijmedinf.2021.104621. Epub 2021 Oct 15.

Abstract

BACKGROUND

Although electronic health records (EHR) have significant potential for the study of opioid use disorders (OUD), detecting OUD in clinical data is challenging. Models using EHR data to predict OUD often rely on case/control classifications focused on extreme opioid use. There is a need to expand this work to characterize the spectrum of problematic opioid use.

METHODS

Using a large academic medical center database, we developed 2 data-driven methods of OUD detection: (1) a Comorbidity Score developed from a Phenome-Wide Association Study of phenotypes associated with OUD and (2) a Text-based Score using natural language processing to identify OUD-related concepts in clinical notes. We evaluated the performance of both scores against a manual review with correlation coefficients, Wilcoxon rank sum tests, and area-under the receiver operating characteristic curves. Records with the highest Comorbidity and Text-based scores were re-evaluated by manual review to explore discrepancies.

RESULTS

Both the Comorbidity and Text-based OUD risk scores were significantly elevated in the patients judged as High Evidence for OUD in the manual review compared to those with No Evidence (p = 1.3E-5 and 1.3E-6, respectively). The risk scores were positively correlated with each other (rho = 0.52, p < 0.001). AUCs for the Comorbidity and Text-based scores were high (0.79 and 0.76, respectively). Follow-up manual review of discrepant findings revealed strengths of data-driven methods over manual review, and opportunities for improvement in risk assessment.

CONCLUSION

Risk scores comprising comorbidities and text offer differing but synergistic insights into characterizing problematic opioid use. This pilot project establishes a foundation for more robust work in the future.

摘要

背景

尽管电子健康记录 (EHR) 在研究阿片类药物使用障碍 (OUD) 方面具有重要潜力,但在临床数据中检测 OUD 具有挑战性。使用 EHR 数据预测 OUD 的模型通常依赖于关注极端阿片类药物使用的病例/对照分类。需要扩展这项工作以描述阿片类药物使用问题的范围。

方法

使用大型学术医疗中心数据库,我们开发了两种基于数据的 OUD 检测方法:(1) 从与 OUD 相关表型的全表型关联研究中开发的共病评分,以及 (2) 使用自然语言处理在临床记录中识别 OUD 相关概念的基于文本的评分。我们通过相关系数、Wilcoxon 秩和检验和受试者工作特征曲线下面积来评估这两种评分与手动审查的性能。使用最高共病和基于文本的评分的记录由手动审查重新评估,以探索差异。

结果

与手动审查中被判断为 OUD 证据不足的患者相比,被判断为 OUD 证据较高的患者的共病和基于文本的 OUD 风险评分均显著升高 (p = 1.3E-5 和 1.3E-6,分别)。风险评分彼此呈正相关 (rho = 0.52,p < 0.001)。共病和基于文本评分的 AUC 均较高 (分别为 0.79 和 0.76)。对不一致发现的后续手动审查揭示了数据驱动方法相对于手动审查的优势,以及风险评估改进的机会。

结论

由共病和文本组成的风险评分提供了对描述阿片类药物使用问题的不同但互补的见解。这个试点项目为未来更强大的工作奠定了基础。

相似文献

1
Two data-driven approaches to identifying the spectrum of problematic opioid use: A pilot study within a chronic pain cohort.
Int J Med Inform. 2021 Dec;156:104621. doi: 10.1016/j.ijmedinf.2021.104621. Epub 2021 Oct 15.
2
Classifying Characteristics of Opioid Use Disorder From Hospital Discharge Summaries Using Natural Language Processing.
Front Public Health. 2022 May 9;10:850619. doi: 10.3389/fpubh.2022.850619. eCollection 2022.
3
Using natural language processing to identify opioid use disorder in electronic health record data.
Int J Med Inform. 2023 Feb;170:104963. doi: 10.1016/j.ijmedinf.2022.104963. Epub 2022 Dec 10.
5
Identification of opioid use disorder using electronic health records: Beyond diagnostic codes.
Drug Alcohol Depend. 2023 Oct 1;251:110950. doi: 10.1016/j.drugalcdep.2023.110950. Epub 2023 Sep 2.
7
Chronic pain among patients with opioid use disorder: Results from electronic health records data.
J Subst Abuse Treat. 2017 Jun;77:26-30. doi: 10.1016/j.jsat.2017.03.006. Epub 2017 Mar 9.
8
Automatically identifying opioid use disorder in non-cancer patients on chronic opioid therapy.
Health Informatics J. 2022 Apr-Jun;28(2):14604582221107808. doi: 10.1177/14604582221107808.
9
Independent association of tobacco use with opioid use disorder in patients of European ancestry with chronic non-cancer pain.
Drug Alcohol Depend. 2020 Apr 1;209:107901. doi: 10.1016/j.drugalcdep.2020.107901. Epub 2020 Feb 14.
10
Impact of reported NSAID "allergies" on opioid use disorder in back pain.
J Allergy Clin Immunol. 2021 Apr;147(4):1413-1419. doi: 10.1016/j.jaci.2020.08.025. Epub 2020 Sep 9.

引用本文的文献

1
Automating the Addiction Behaviors Checklist for Problematic Opioid Use Identification.
JAMA Psychiatry. 2025 Apr 9. doi: 10.1001/jamapsychiatry.2025.0424.
2
Evaluation of an emergency department-based approach to reduce subsequent opioid overdoses.
J Am Coll Emerg Physicians Open. 2024 Oct 22;5(5):e13304. doi: 10.1002/emp2.13304. eCollection 2024 Oct.
3
Predictive Models to Assess Risk of Persistent Opioid Use, Opioid Use Disorder, and Overdose.
J Addict Med. 2024;18(3):218-239. doi: 10.1097/ADM.0000000000001276. Epub 2024 Apr 9.
5
Identification of opioid use disorder using electronic health records: Beyond diagnostic codes.
Drug Alcohol Depend. 2023 Oct 1;251:110950. doi: 10.1016/j.drugalcdep.2023.110950. Epub 2023 Sep 2.
6
Computational phenotypes for patients with opioid-related disorders presenting to the emergency department.
PLoS One. 2023 Sep 15;18(9):e0291572. doi: 10.1371/journal.pone.0291572. eCollection 2023.
8
Identifying High-Risk Comorbidities Associated with Opioid Use Patterns Using Electronic Health Record Prescription Data.
Complex Psychiatry. 2022 Sep;8(1-2):47-55. doi: 10.1159/000525313. Epub 2022 Jun 2.
9
Accelerating Opioid Use Disorders Research by Integrating Multiple Data Modalities.
Complex Psychiatry. 2022 Sep;8(1-2):1-8. doi: 10.1159/000525079. Epub 2022 May 23.

本文引用的文献

1
Trends and Geographic Patterns in Drug and Synthetic Opioid Overdose Deaths - United States, 2013-2019.
MMWR Morb Mortal Wkly Rep. 2021 Feb 12;70(6):202-207. doi: 10.15585/mmwr.mm7006a4.
4
Assessment of Probable Opioid Use Disorder Using Electronic Health Record Documentation.
JAMA Netw Open. 2020 Sep 1;3(9):e2015909. doi: 10.1001/jamanetworkopen.2020.15909.
5
9
Subtypes in patients with opioid misuse: A prognostic enrichment strategy using electronic health record data in hospitalized patients.
PLoS One. 2019 Jul 16;14(7):e0219717. doi: 10.1371/journal.pone.0219717. eCollection 2019.
10
Predicting opioid dependence from electronic health records with machine learning.
BioData Min. 2019 Jan 29;12:3. doi: 10.1186/s13040-019-0193-0. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验