Vanderbilt University School of Nursing, 461 21st Avenue South, Nashville, TN 37240, USA.
Vanderbilt University School of Nursing, 461 21st Avenue South, Nashville, TN 37240, USA; Vanderbilt University, Department of Biomedical Informatics, 2525 West End Ave #1475, Nashville, TN 37203, USA.
Int J Med Inform. 2021 Dec;156:104621. doi: 10.1016/j.ijmedinf.2021.104621. Epub 2021 Oct 15.
Although electronic health records (EHR) have significant potential for the study of opioid use disorders (OUD), detecting OUD in clinical data is challenging. Models using EHR data to predict OUD often rely on case/control classifications focused on extreme opioid use. There is a need to expand this work to characterize the spectrum of problematic opioid use.
Using a large academic medical center database, we developed 2 data-driven methods of OUD detection: (1) a Comorbidity Score developed from a Phenome-Wide Association Study of phenotypes associated with OUD and (2) a Text-based Score using natural language processing to identify OUD-related concepts in clinical notes. We evaluated the performance of both scores against a manual review with correlation coefficients, Wilcoxon rank sum tests, and area-under the receiver operating characteristic curves. Records with the highest Comorbidity and Text-based scores were re-evaluated by manual review to explore discrepancies.
Both the Comorbidity and Text-based OUD risk scores were significantly elevated in the patients judged as High Evidence for OUD in the manual review compared to those with No Evidence (p = 1.3E-5 and 1.3E-6, respectively). The risk scores were positively correlated with each other (rho = 0.52, p < 0.001). AUCs for the Comorbidity and Text-based scores were high (0.79 and 0.76, respectively). Follow-up manual review of discrepant findings revealed strengths of data-driven methods over manual review, and opportunities for improvement in risk assessment.
Risk scores comprising comorbidities and text offer differing but synergistic insights into characterizing problematic opioid use. This pilot project establishes a foundation for more robust work in the future.
尽管电子健康记录 (EHR) 在研究阿片类药物使用障碍 (OUD) 方面具有重要潜力,但在临床数据中检测 OUD 具有挑战性。使用 EHR 数据预测 OUD 的模型通常依赖于关注极端阿片类药物使用的病例/对照分类。需要扩展这项工作以描述阿片类药物使用问题的范围。
使用大型学术医疗中心数据库,我们开发了两种基于数据的 OUD 检测方法:(1) 从与 OUD 相关表型的全表型关联研究中开发的共病评分,以及 (2) 使用自然语言处理在临床记录中识别 OUD 相关概念的基于文本的评分。我们通过相关系数、Wilcoxon 秩和检验和受试者工作特征曲线下面积来评估这两种评分与手动审查的性能。使用最高共病和基于文本的评分的记录由手动审查重新评估,以探索差异。
与手动审查中被判断为 OUD 证据不足的患者相比,被判断为 OUD 证据较高的患者的共病和基于文本的 OUD 风险评分均显著升高 (p = 1.3E-5 和 1.3E-6,分别)。风险评分彼此呈正相关 (rho = 0.52,p < 0.001)。共病和基于文本评分的 AUC 均较高 (分别为 0.79 和 0.76)。对不一致发现的后续手动审查揭示了数据驱动方法相对于手动审查的优势,以及风险评估改进的机会。
由共病和文本组成的风险评分提供了对描述阿片类药物使用问题的不同但互补的见解。这个试点项目为未来更强大的工作奠定了基础。