文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的铜死亡相关 lncRNA 标志物在透明细胞肾细胞癌预后和免疫治疗中的鉴定和验证。

Identification and Validation of Cuproptosis-Related LncRNA Signatures in the Prognosis and Immunotherapy of Clear Cell Renal Cell Carcinoma Using Machine Learning.

机构信息

Organ Transplant Center, The Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China.

Department of Nephrology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China.

出版信息

Biomolecules. 2022 Dec 16;12(12):1890. doi: 10.3390/biom12121890.


DOI:10.3390/biom12121890
PMID:36551318
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9776244/
Abstract

(1) Objective: We aimed to mine cuproptosis-related LncRNAs with prognostic value and construct a corresponding prognostic model using machine learning. External validation of the model was performed in the ICGC database and in multiple renal cancer cell lines via qPCR. Methods: TCGA and ICGC cohorts related to renal clear cell carcinoma were included. GO and KEGG analyses were conducted to determine the biological significance of differentially expressed cuproptosis-related LncRNAs (CRLRs). Machine learning (LASSO), Kaplan-Meier, and Cox analyses were conducted to determine the prognostic genes. The tumor microenvironment and tumor mutation load were further studied. TIDE and IC50 were used to evaluate the response to immunotherapy, a risk model of LncRNAs related to the cuproptosis genes was established, and the ability of this model was verified in an external independent ICGC cohort. LncRNAs were identified in normal HK-2 cells and verified in four renal cell lines via qPCR. (3) Results: We obtained 280 CRLRs and identified 66 LncRNAs included in the TCGA-KIRC cohort. Then, three hub LncRNAs (AC026401.3, FOXD2-AS1, and LASTR), which were over-expressed in the four ccRCC cell lines compared with the human renal cortex proximal tubule epithelial cell line HK-2, were identified. In the ICGC database, the expression of FOXD2-AS1 and LASTR was consistent with the qPCR and TCGA-KIRC. The results also indicated that patients with low-risk ccRCC-stratified by tumor-node metastasis stage, sex, and tumor grade-had significantly better overall survival than those with high-risk ccRCC. The predictive algorithm showed that, according to the three CRLR models, the low-risk group was more sensitive to nine target drugs (A.443654, A.770041, ABT.888, AG.014699, AMG.706, ATRA, AP.24534, axitinib, and AZ628), based on the estimated half-maximal inhibitory concentrations. In contrast, the high-risk group was more sensitive to ABT.263 and AKT inhibitors VIII and AS601245. Using the CRLR models, the correlation between the tumor immune microenvironment and cancer immunotherapy response revealed that high-risk patients are more likely to respond to immunotherapy than low-risk patients. In terms of immune marker levels, there were significant differences between the high- and low-risk groups. A high TMB score in the high-risk CRLR group was associated with worse survival, which could be a prognostic factor for KIRC. (4) Conclusions: This study elucidates the core cuproptosis-related LncRNAs, FOXD2-AS1, AC026401.3, and LASTR, in terms of potential predictive value, immunotherapeutic strategy, and outcome of ccRCC.

摘要

(1) 目的:我们旨在利用机器学习挖掘具有预后价值的铜死亡相关长链非编码 RNA (LncRNA),并构建相应的预后模型。在 ICGC 数据库和多个肾癌细胞系中通过 qPCR 对模型进行外部验证。方法:纳入与肾透明细胞癌相关的 TCGA 和 ICGC 队列。通过 GO 和 KEGG 分析确定差异表达的铜死亡相关 LncRNA (CRLR) 的生物学意义。利用机器学习(LASSO)、Kaplan-Meier 和 Cox 分析确定预后基因。进一步研究肿瘤微环境和肿瘤突变负荷。使用 TIDE 和 IC50 评估免疫治疗反应,建立与铜死亡基因相关的 LncRNA 风险模型,并在外部独立的 ICGC 队列中验证该模型的能力。通过 qPCR 在正常 HK-2 细胞中鉴定 LncRNA,并在四个肾癌细胞系中验证。(3) 结果:我们获得了 280 个 CRLR,并鉴定了包含在 TCGA-KIRC 队列中的 66 个 LncRNA。然后,我们鉴定了三个在四个 ccRCC 细胞系中与人类肾皮质近端小管上皮细胞系 HK-2 相比表达上调的关键 LncRNA(AC026401.3、FOXD2-AS1 和 LASTR)。在 ICGC 数据库中,FOXD2-AS1 和 LASTR 的表达与 qPCR 和 TCGA-KIRC 一致。结果还表明,根据肿瘤-淋巴结-转移分期、性别和肿瘤分级对 ccRCC 进行分层,低风险组的总生存率明显高于高风险组。预测算法表明,根据三个 CRLR 模型,低风险组对 9 种靶向药物(A.443654、A.770041、ABT.888、AG.014699、AMG.706、ATRA、AP.24534、axitinib 和 AZ628)更敏感,基于估计的半最大抑制浓度。相比之下,高风险组对 ABT.263 和 AKT 抑制剂 VIII 和 AS601245 更敏感。使用 CRLR 模型,肿瘤免疫微环境与癌症免疫治疗反应的相关性表明,高风险患者比低风险患者更有可能对免疫治疗产生反应。在免疫标志物水平方面,高风险组和低风险组之间存在显著差异。高风险 CRLR 组的高 TMB 评分与较差的生存相关,这可能是 KIRC 的预后因素。(4) 结论:本研究阐明了铜死亡相关 LncRNA,FOXD2-AS1、AC026401.3 和 LASTR 在 ccRCC 的潜在预测价值、免疫治疗策略和预后方面的核心作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/94d9d38b8738/biomolecules-12-01890-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/2bc7eb5d998b/biomolecules-12-01890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/0457d48ce954/biomolecules-12-01890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/00572d2498dc/biomolecules-12-01890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/d45c00b48116/biomolecules-12-01890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/2515ac8739cf/biomolecules-12-01890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/bdd2f175101e/biomolecules-12-01890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/571dbf8ab226/biomolecules-12-01890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/b37edbc05b70/biomolecules-12-01890-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/d0da04b42f21/biomolecules-12-01890-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/714322cba89a/biomolecules-12-01890-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/b86e4930d4ec/biomolecules-12-01890-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/507dc47d4629/biomolecules-12-01890-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/94d9d38b8738/biomolecules-12-01890-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/2bc7eb5d998b/biomolecules-12-01890-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/0457d48ce954/biomolecules-12-01890-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/00572d2498dc/biomolecules-12-01890-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/d45c00b48116/biomolecules-12-01890-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/2515ac8739cf/biomolecules-12-01890-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/bdd2f175101e/biomolecules-12-01890-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/571dbf8ab226/biomolecules-12-01890-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/b37edbc05b70/biomolecules-12-01890-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/d0da04b42f21/biomolecules-12-01890-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/714322cba89a/biomolecules-12-01890-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/b86e4930d4ec/biomolecules-12-01890-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/507dc47d4629/biomolecules-12-01890-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a83/9776244/94d9d38b8738/biomolecules-12-01890-g013.jpg

相似文献

[1]
Identification and Validation of Cuproptosis-Related LncRNA Signatures in the Prognosis and Immunotherapy of Clear Cell Renal Cell Carcinoma Using Machine Learning.

Biomolecules. 2022-12-16

[2]
Cuproptosis-Related LncRNA-Based Prediction of the Prognosis and Immunotherapy Response in Papillary Renal Cell Carcinoma.

Int J Mol Sci. 2023-1-11

[3]
A Cuproptosis-Related LncRNA Risk Model for Predicting Prognosis and Immunotherapeutic Efficacy in Patients with Hepatocellular Carcinoma.

Biochem Genet. 2024-6

[4]
Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology.

Eur J Med Res. 2024-3-16

[5]
Cuproptosis-Associated lncRNA Establishes New Prognostic Profile and Predicts Immunotherapy Response in Clear Cell Renal Cell Carcinoma.

Front Genet. 2022-7-15

[6]
A Cuproptosis-Related lncRNAs Signature Could Accurately Predict Prognosis in Patients with Clear Cell Renal Cell Carcinoma.

Anal Cell Pathol (Amst). 2022

[7]
Exosome-related lncRNA score: A value-based individual treatment strategy for predicting the response to immunotherapy in clear cell renal cell carcinoma.

Cancer Med. 2024-6

[8]
Construction and Validation of a Novel Cuproptosis-Related Seven-lncRNA Signature to Predict the Outcomes, Immunotherapeutic Responses, and Targeted Therapy in Patients with Clear Cell Renal Cell Carcinoma.

Dis Markers. 2023

[9]
Construction and systematic evaluation of a machine learning-based cuproptosis-related lncRNA score signature to predict the response to immunotherapy in hepatocellular carcinoma.

Front Immunol. 2023

[10]
Computational construction of TME-related lncRNAs signature for predicting prognosis and immunotherapy response in clear cell renal cell carcinoma.

J Clin Lab Anal. 2022-8

引用本文的文献

[1]
Migrasome-related lncRNAs predict prognosis and immune response of clear cell renal cell carcinoma.

Transl Androl Urol. 2025-5-30

[2]
A reliable prognostic model for hepatocellular carcinoma using neutrophil extracellular traps and immune related genes.

Sci Rep. 2025-6-3

[3]
Exploration of a prognostic signature for mitochondria-related genes and the therapeutic prospects of vorinostat in clear cell renal cell carcinoma.

Transl Androl Urol. 2025-2-28

[4]
Construction of a prognostic risk model for clear cell renal cell carcinomas based on centrosome amplification-related genes.

Mol Genet Genomics. 2025-3-13

[5]
Construction and experimental verification of a novel nine-glycosylation-related gene prognostic risk model for clear cell renal carcinoma.

Heliyon. 2024-10-11

[6]
LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks.

BMC Bioinformatics. 2024-10-15

[7]
Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology.

Eur J Med Res. 2024-3-16

[8]
Establishment of a prognostic risk prediction model incorporating disulfidptosis-related lncRNA for patients with prostate cancer.

BMC Cancer. 2024-1-8

[9]
An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases.

Curr Issues Mol Biol. 2023-9-21

[10]
Construction and Validation of a Novel Prognosis Model in Colon Cancer Based on Cuproptosis-Related Long Non-Coding RNAs.

J Clin Med. 2023-2-15

本文引用的文献

[1]
A Connexin-Based Biomarker Model Applicable for Prognosis and Immune Landscape Assessment in Lung Adenocarcinoma.

J Oncol. 2022-10-12

[2]
Establishment and Validation of a Nomogram Prognostic Model for Epithelioid Hemangioendothelioma.

J Oncol. 2022-10-6

[3]
LASSO Model Better Predicted the Prognosis of DLBCL than Random Forest Model: A Retrospective Multicenter Analysis of HHLWG.

J Oncol. 2022-9-16

[4]
Cuproptosis: a copper-triggered modality of mitochondrial cell death.

Cell Res. 2022-5

[5]
Copper induces cell death by targeting lipoylated TCA cycle proteins.

Science. 2022-3-18

[6]
LncRNA LASTR promote lung cancer progression through the miR-137/TGFA/PI3K/AKT axis through integration analysis.

J Cancer. 2022-1-6

[7]
Prognostic and predictive value of the hypoxia-associated long non-coding RNA signature in hepatocellular carcinoma.

Yi Chuan. 2022-2-20

[8]
Ferroptosis‑related long non‑coding RNAs and the roles of LASTR in stomach adenocarcinoma.

Mol Med Rep. 2022-4

[9]
Role of Metabolic Reprogramming of Long non-coding RNA in Clear Cell Renal Cell Carcinoma.

J Cancer. 2022-1-1

[10]
LncRNAs in the Regulation of Genes and Signaling Pathways through miRNA-Mediated and Other Mechanisms in Clear Cell Renal Cell Carcinoma.

Int J Mol Sci. 2021-10-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索