文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

与随机森林模型相比,LASSO模型能更好地预测弥漫性大B细胞淋巴瘤的预后:一项HHLWG的回顾性多中心分析

LASSO Model Better Predicted the Prognosis of DLBCL than Random Forest Model: A Retrospective Multicenter Analysis of HHLWG.

作者信息

Shen Ziyuan, Zhang Shuo, Jiao Yaxue, Shi Yuye, Zhang Hao, Wang Fei, Wang Ling, Zhu Taigang, Miao Yuqing, Sang Wei, Cai Guoqi, Huaihai Lymphoma Working Group

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.

Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, China.

出版信息

J Oncol. 2022 Sep 16;2022:1618272. doi: 10.1155/2022/1618272. eCollection 2022.


DOI:10.1155/2022/1618272
PMID:36157230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9507678/
Abstract

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous non-Hodgkin's lymphoma with great clinical challenge. Machine learning (ML) has attracted substantial attention in diagnosis, prognosis, and treatment of diseases. This study is aimed at exploring the prognostic factors of DLBCL by ML. METHODS: In total, 1211 DLBCL patients were retrieved from Huaihai Lymphoma Working Group (HHLWG). The least absolute shrinkage and selection operator (LASSO) and random forest algorithm were used to identify prognostic factors for the overall survival (OS) rate of DLBCL among twenty-five variables. Receiver operating characteristic (ROC) curve and decision curve analysis (DCA) were utilized to compare the predictive performance and clinical effectiveness of the two models, respectively. RESULTS: The median follow-up time was 43.4 months, and the 5-year OS was 58.5%. The LASSO model achieved an Area under the curve (AUC) of 75.8% for the prognosis of DLBCL, which was higher than that of the random forest model (AUC: 71.6%). DCA analysis also revealed that the LASSO model could augment net benefits and exhibited a wider range of threshold probabilities by risk stratification than the random forest model. In addition, multivariable analysis demonstrated that age, white blood cell count, hemoglobin, central nervous system involvement, gender, and Ann Arbor stage were independent prognostic factors for DLBCL. The LASSO model showed better discrimination of outcomes compared with the IPI and NCCN-IPI models and identified three groups of patients: low risk, high-intermediate risk, and high risk. CONCLUSIONS: The prognostic model of DLBCL based on the LASSO regression was more accurate than the random forest, IPI, and NCCN-IPI models.

摘要

背景:弥漫性大B细胞淋巴瘤(DLBCL)是一种异质性非霍奇金淋巴瘤,具有重大临床挑战。机器学习(ML)在疾病的诊断、预后和治疗方面已引起广泛关注。本研究旨在通过机器学习探索DLBCL的预后因素。 方法:从淮海淋巴瘤工作组(HHLWG)检索了总共1211例DLBCL患者。采用最小绝对收缩和选择算子(LASSO)及随机森林算法,在25个变量中识别DLBCL总生存率(OS)的预后因素。分别利用受试者工作特征(ROC)曲线和决策曲线分析(DCA)比较两种模型的预测性能和临床有效性。 结果:中位随访时间为43.4个月,5年总生存率为58.5%。LASSO模型对DLBCL预后的曲线下面积(AUC)为75.8%,高于随机森林模型(AUC:71.6%)。DCA分析还显示,LASSO模型可增加净效益,且与随机森林模型相比,通过风险分层显示出更广泛的阈值概率范围。此外,多变量分析表明,年龄、白细胞计数、血红蛋白、中枢神经系统受累、性别和Ann Arbor分期是DLBCL的独立预后因素。与国际预后指数(IPI)和美国国立综合癌症网络(NCCN)-IPI模型相比,LASSO模型对预后的区分度更好,并识别出三组患者:低风险、高中间风险和高风险。 结论:基于LASSO回归的DLBCL预后模型比随机森林、IPI和NCCN-IPI模型更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/d17674984722/JO2022-1618272.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/dec08adb8e52/JO2022-1618272.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/7b51f6a28bbc/JO2022-1618272.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/c674a91bc144/JO2022-1618272.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/e8790d9e9918/JO2022-1618272.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/ec4cbdcf6e6c/JO2022-1618272.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/d17674984722/JO2022-1618272.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/dec08adb8e52/JO2022-1618272.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/7b51f6a28bbc/JO2022-1618272.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/c674a91bc144/JO2022-1618272.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/e8790d9e9918/JO2022-1618272.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/ec4cbdcf6e6c/JO2022-1618272.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/9507678/d17674984722/JO2022-1618272.006.jpg

相似文献

[1]
LASSO Model Better Predicted the Prognosis of DLBCL than Random Forest Model: A Retrospective Multicenter Analysis of HHLWG.

J Oncol. 2022-9-16

[2]
An Externally Validated Nomogram for Predicting the Overall Survival of Patients With Diffuse Large B-Cell Lymphoma Based on Clinical Characteristics and Systemic Inflammatory Markers.

Technol Cancer Res Treat. 2023

[3]
Prognostic value of metabolic tumour volume on baseline F-FDG PET/CT in addition to NCCN-IPI in patients with diffuse large B-cell lymphoma: further stratification of the group with a high-risk NCCN-IPI.

Eur J Nucl Med Mol Imaging. 2019-4-2

[4]
Enhancement of the International prognostic index with β2-microglobulin, platelet count and red blood cell distribution width: a new prognostic model for diffuse large B-cell lymphoma in the rituximab era.

BMC Cancer. 2022-5-27

[5]
The Value of Prognostic Nutritional Index (PNI) on Newly Diagnosed Diffuse Large B-Cell Lymphoma Patients: A Multicenter Retrospective Study of HHLWG Based on Propensity Score Matched Analysis.

J Inflamm Res. 2021-10-27

[6]
Clinical characteristics and outcomes of patients with diffuse large B cell lymphoma treated with R-CHOP-like or CHOP-like regimens: an 8-year experience from a single center.

Ann Palliat Med. 2020-7

[7]
Development and validation of nomogram prognostic model for predicting OS in patients with diffuse large B-cell lymphoma: a cohort study in China.

Ann Hematol. 2023-12

[8]
A novel analytic approach for outcome prediction in diffuse large B-cell lymphoma by [F]FDG PET/CT.

Eur J Nucl Med Mol Imaging. 2022-3

[9]
Value of total lesion glycolysis and cell-of-origin subtypes for prognostic stratification of diffuse large B-cell lymphoma patients.

Quant Imaging Med Surg. 2021-6

[10]
Prognostic Nomogram for Overall Survival in Patients with Diffuse Large B-Cell Lymphoma.

Oncologist. 2019-4-5

引用本文的文献

[1]
Computational modelling of aggressive B-cell lymphoma.

Biochem Soc Trans. 2025-7-4

[2]
Using machine learning methods to investigate the impact of age on the causes of death in patients with early intrahepatic cholangiocarcinoma who underwent surgery.

Clin Transl Oncol. 2025-4

[3]
Identifying Factors Affecting the Survival of Patients with HIV-Associated B-Cell Lymphoma Using a Random Survival Forest Model.

Clin Med Insights Oncol. 2024-6-22

[4]
PET-based radiomic feature based on the cross-combination method for predicting the mid-term efficacy and prognosis in high-risk diffuse large B-cell lymphoma patients.

Front Oncol. 2024-6-5

[5]
Specific mortality in patients with diffuse large B-cell lymphoma: a retrospective analysis based on the surveillance, epidemiology, and end results database.

Eur J Med Res. 2024-4-20

[6]
Identification and Validation of Cuproptosis-Related LncRNA Signatures in the Prognosis and Immunotherapy of Clear Cell Renal Cell Carcinoma Using Machine Learning.

Biomolecules. 2022-12-16

本文引用的文献

[1]
Machine Learning in Action: Stroke Diagnosis and Outcome Prediction.

Front Neurol. 2021-12-6

[2]
The Value of Prognostic Nutritional Index (PNI) on Newly Diagnosed Diffuse Large B-Cell Lymphoma Patients: A Multicenter Retrospective Study of HHLWG Based on Propensity Score Matched Analysis.

J Inflamm Res. 2021-10-27

[3]
A novel prognostic signature based on immune-related genes of diffuse large B-cell lymphoma.

Aging (Albany NY). 2021-10-5

[4]
Prognostic Value of Peripheral Blood Lymphocyte/monocyte Ratio in Lymphoma.

J Cancer. 2021-4-19

[5]
Infection-related morbidity and mortality among older patients with DLBCL treated with full- or attenuated-dose R-CHOP.

Blood Adv. 2021-4-27

[6]
Conditional survival and hazards of death for peripheral T-cell lymphomas.

Aging (Albany NY). 2021-3-26

[7]
Clinicopathological characteristics and prognostic factors of primary pulmonary lymphoma.

J Thorac Dis. 2021-2

[8]
Development and validation of an autophagy-related prognostic signature in esophageal cancer.

Ann Transl Med. 2021-2

[9]
Prognostic Assessment of COVID-19 in the Intensive Care Unit by Machine Learning Methods: Model Development and Validation.

J Med Internet Res. 2020-11-11

[10]
Multiomics and machine learning in lung cancer prognosis.

J Thorac Dis. 2020-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索