Suppr超能文献

Influence of adjuvants on physicochemical properties, droplet size spectra and deposit patterns: relevance in pesticide applications.

作者信息

Sundaram A, Leung J W, Curry R D

机构信息

Agriculture Canada, Forest Pest Management Institute, Sault Ste. Marie, Ontario.

出版信息

J Environ Sci Health B. 1987 Jun;22(3):319-46. doi: 10.1080/03601238709372560.

Abstract

The influence of adjuvants on physicochemical properties, droplet size spectra and deposit patterns of five aqueous spray mixtures was studied under laboratory conditions, using two surfactants, Atlox 3409F and Triton X-114; two humectants, propylene glycol and glycerol; and one polymeric adjuvant, Agrisol FL-100F. For the sake of comparison, two fenitrothion formulations containing polymeric adjuvants, and water were also included in the study. Spray was applied at 25 degrees C and 75 +/- 5% relative humidity, in an enclosure using a twin fluid atomizer. Deposits were collected on Kromekote card/glass plate units. Physicochemical properties studied were: relative viscosity, surface tension, apparent viscosity-shear rate relationship, volatility, pH and conductance. The first four of these properties played significant roles on the droplet and deposit patterns on sampling units. However, the chemical nature of the adjuvants also played some role. Between the two surfactants tested, Triton X-114 provided a pseudoplastic medium, but both surfactant solutions provided similar droplet size spectra and deposit patterns. Between the two humectants, glycerol proved to be more advantageous than propylene glycol. The polymeric adjuvant provided droplet sizes similar to those of the two surfactants, although the recovery of the applied spray volume was higher. Among the two fenitrothion formulations, the one containing lower amounts of polymeric adjuvants showed some advantages, although deposits on the actual biological target should be examined before any definite conclusions can be drawn on the optimum adjuvant concentrations in end-use formulations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验