Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA.
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
Cells. 2022 Dec 19;11(24):4128. doi: 10.3390/cells11244128.
Mitochondrial dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to investigate the role of different mitochondrial constituents, specifically those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs.
Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components: capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: rotenone for complex I, oligomycin for complex V (ATP synthase), and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: Cell-cell interactions (R), cell-matrix interactions (α), and cell membrane permeability (Cm).
Rotenone (1 µM) produced the greatest reduction in Z, followed by FCCP (1 µM), whereas no reduction in Z was observed after oligomycin (1 µM) treatment. We then further deconvoluted the effects of these inhibitors on the R, α, and C parameters. Rotenone (1 µM) completely abolished the resistance contribution of R, as the R became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of R only after 2.5 h and increased C without a significant effect on α. Lastly, of all the inhibitors used, oligomycin had the lowest impact on R, as evidenced by the fact that this value became similar to that of the control group at the end of the experiment without noticeable effects on C or α.
Our study demonstrates the differential roles of complex I, complex V, and OxPhos coupling in maintaining the barrier functionality of HRECs. We specifically showed that complex I is the most important component in regulating HREC barrier integrity. These observed differences are significant since they could serve as the basis for future pharmacological and gene expression studies aiming to improve the activity of complex I and thereby provide avenues for therapeutic modalities in endothelial-associated retinal diseases.
线粒体功能障碍是各种致盲眼病(如糖尿病视网膜病变和早产儿视网膜病变)中破坏视网膜内皮细胞(REC)屏障完整性的核心。因此,我们旨在研究不同线粒体成分(特别是氧化磷酸化(OxPhos)的成分)在维持 REC 屏障功能中的作用。
采用电细胞-基底阻抗传感(ECIS)技术实时评估不同线粒体成分在人 REC(HRECs)总阻抗(Z)及其组成部分:电容(C)和总电阻(R)中的作用。用特定的线粒体抑制剂处理 HRECs,这些抑制剂针对 OxPhos 的不同步骤:鱼藤酮针对复合物 I,寡霉素针对复合物 V(ATP 合酶),以及 FCCP 用于解耦 OxPhos。此外,对数据进行建模以研究这些抑制剂对三个控制细胞总电阻的参数的影响:细胞-细胞相互作用(R)、细胞-基质相互作用(α)和细胞膜通透性(Cm)。
鱼藤酮(1 μM)导致 Z 的降低最大,其次是 FCCP(1 μM),而寡霉素(1 μM)处理后 Z 没有降低。然后,我们进一步剖析了这些抑制剂对 R、α 和 C 参数的影响。鱼藤酮(1 μM)完全消除了 R 的电阻贡献,因为处理后 R 立即变为零。其次,FCCP(1 μM)仅在 2.5 小时后消除 R 的电阻贡献,同时增加 C 而对 α 没有显著影响。最后,在所使用的所有抑制剂中,寡霉素对 R 的影响最低,这表现在该值在实验结束时与对照组相似,而对 C 或 α 没有明显影响。
我们的研究表明,复合物 I、复合物 V 和 OxPhos 偶联在维持 HRECs 屏障功能方面发挥着不同的作用。我们特别表明,复合物 I 是调节 HREC 屏障完整性的最重要组成部分。这些观察到的差异具有重要意义,因为它们可以为旨在提高复合物 I 活性的未来药理学和基因表达研究提供基础,从而为内皮相关视网膜疾病的治疗方法提供途径。