Suppr超能文献

驴睾丸和附睪组织转录特异性分析。

Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey.

机构信息

College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.

Jiaozhou Agricultural and Rural Bureau, Jiaozhou 266300, China.

出版信息

Genes (Basel). 2022 Dec 11;13(12):2339. doi: 10.3390/genes13122339.

Abstract

Donkeys, with high economic value for meat, skin and milk production, are important livestock. However, the current insights into reproduction of donkeys are far from enough. To obtain a deeper understanding, the differential expression analysis and weighted gene co-expression network analysis (WGCNA) of transcriptomic data of testicular and epididymis tissues in donkeys were performed. In the result, there were 4313 differentially expressed genes (DEGs) in the two tissues, including 2047 enriched in testicular tissue and 2266 in epididymis tissue. WGCNA identified 1081 hub genes associated with testis development and 6110 genes with epididymal development. Next, the tissue-specific genes were identified with the above two methods, and the gene ontology (GO) analysis revealed that the epididymal-specific genes were associated with gonad development. On the other hand, the testis-specific genes were involved in the formation of sperm flagella, meiosis period, ciliary assembly, ciliary movement, etc. In addition, we found that eca-Mir-711 and eca-Mir-143 likely participated in regulating the development of epididymal tissue. Meanwhile, eca-Mir-429, eca-Mir-761, eca-Mir-200a, eca-Mir-191 and eca-Mir-200b potentially played an important role in regulating the development of testicular tissue. In short, these results will contribute to functional studies of the male reproductive trait in donkeys.

摘要

驴具有很高的肉用、皮用和乳用经济价值,是一种重要的家畜。然而,目前对驴繁殖的了解还远远不够。为了获得更深入的理解,对驴睾丸和附睪组织的转录组数据进行了差异表达分析和加权基因共表达网络分析(WGCNA)。结果表明,在这两种组织中存在 4313 个差异表达基因(DEGs),其中 2047 个在睾丸组织中富集,2266 个在附睪组织中富集。WGCNA 鉴定出与睾丸发育相关的 1081 个枢纽基因和与附睪发育相关的 6110 个基因。接下来,使用上述两种方法鉴定组织特异性基因,基因本体(GO)分析表明,附睪特异性基因与性腺发育有关。另一方面,睾丸特异性基因参与精子鞭毛的形成、减数分裂期、纤毛组装、纤毛运动等过程。此外,我们发现 eca-Mir-711 和 eca-Mir-143 可能参与调节附睪组织的发育。同时,eca-Mir-429、eca-Mir-761、eca-Mir-200a、eca-Mir-191 和 eca-Mir-200b 可能在调节睾丸组织发育中发挥重要作用。总之,这些结果将有助于驴雄性生殖特性的功能研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ca/9777602/54f360d824fc/genes-13-02339-g001.jpg

相似文献

1
Transcriptional Specificity Analysis of Testis and Epididymis Tissues in Donkey.
Genes (Basel). 2022 Dec 11;13(12):2339. doi: 10.3390/genes13122339.
2
Age-related changes in testicular morphometry and function in Egyptian donkeys.
Reprod Domest Anim. 2022 Nov;57(11):1319-1326. doi: 10.1111/rda.14207. Epub 2022 Jul 25.
3
The adult boar testicular and epididymal transcriptomes.
BMC Genomics. 2009 Aug 7;10:369. doi: 10.1186/1471-2164-10-369.
6
Impact of male fertility status on the transcriptome of the bovine epididymis.
Mol Hum Reprod. 2017 Jun 1;23(6):355-369. doi: 10.1093/molehr/gax019.
7
Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm.
Epigenetics Chromatin. 2021 May 24;14(1):24. doi: 10.1186/s13072-021-00397-5.
9
Epididymal Sperm Granuloma and Antisperm Antibodies in Donkeys.
J Equine Vet Sci. 2021 Jun;101:103450. doi: 10.1016/j.jevs.2021.103450. Epub 2021 Mar 23.
10
A Single-Cell Landscape of Spermioteleosis in Mice and Pigs.
Cells. 2024 Mar 22;13(7):563. doi: 10.3390/cells13070563.

引用本文的文献

2
3
A review of genetic resources and trends of omics applications in donkey research: focus on China.
Front Vet Sci. 2024 Oct 11;11:1366128. doi: 10.3389/fvets.2024.1366128. eCollection 2024.
4
First Molecular Detection and Genetic Characterization of and in Donkeys in Shanxi Province, China.
Animals (Basel). 2024 Sep 12;14(18):2651. doi: 10.3390/ani14182651.
5
Analysis of miRNAs in milk of four livestock species.
BMC Genomics. 2024 Sep 14;25(1):859. doi: 10.1186/s12864-024-10783-4.

本文引用的文献

1
Rec8 Cohesin-mediated Axis-loop chromatin architecture is required for meiotic recombination.
Nucleic Acids Res. 2022 Apr 22;50(7):3799-3816. doi: 10.1093/nar/gkac183.
2
Screening key miRNAs and genes in prostate cancer by microarray analysis.
Transl Cancer Res. 2020 Feb;9(2):856-868. doi: 10.21037/tcr.2019.12.30.
3
Transcriptome Atlas of 16 Donkey Tissues.
Front Genet. 2021 Aug 9;12:682734. doi: 10.3389/fgene.2021.682734. eCollection 2021.
4
A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival.
Cell Death Differ. 2022 Jan;29(1):105-117. doi: 10.1038/s41418-021-00845-5. Epub 2021 Aug 6.
5
Donkey Industry in China: Current Aspects, Suggestions and Future Challenges.
J Equine Vet Sci. 2021 Jul;102:103642. doi: 10.1016/j.jevs.2021.103642. Epub 2021 Apr 29.
7
CEP164 is essential for efferent duct multiciliogenesis and male fertility.
Reproduction. 2021 Jul 8;162(2):129-139. doi: 10.1530/REP-21-0042.
8
Downregulation of ATP6V1A Involved in Alzheimer's Disease via Synaptic Vesicle Cycle, Phagosome, and Oxidative Phosphorylation.
Oxid Med Cell Longev. 2021 Apr 19;2021:5555634. doi: 10.1155/2021/5555634. eCollection 2021.
10
Falco: high-speed FastQC emulation for quality control of sequencing data.
F1000Res. 2019 Nov 7;8:1874. doi: 10.12688/f1000research.21142.2. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验