Cetto Ana Maria, de la Peña Luis
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
Entropy (Basel). 2022 Nov 24;24(12):1717. doi: 10.3390/e24121717.
This paper provides elements in support of the random zero-point radiation field (zpf) as an essential ontological ingredient needed to explain distinctive properties of quantum-mechanical systems. We show that when an otherwise classical particle is connected to the zpf, a drastic, qualitative change in the dynamics takes place, leading eventually to the quantum dynamics. In particular, we demonstrate that in parallel with the evolution of the canonical variables of the particle into quantum operators satisfying the basic commutator x^,p^=iℏ, also the field canonical variables are transformed, giving rise to the corresponding creation and annihilation operators a^†,a^, satisfying a^,a^†=1. This allows for an explanation of quantum features such as quantum fluctuations, stationary states and transitions, and establishes a natural contact with (nonrelativistic) quantum electrodynamics.
本文提供了一些要素来支持随机零点辐射场(zpf)作为解释量子力学系统独特性质所需的基本本体论成分。我们表明,当一个原本经典的粒子与zpf相连时,动力学中会发生剧烈的、定性的变化,最终导致量子动力学。特别地,我们证明,随着粒子的正则变量演化为满足基本对易关系[x̂,p̂]=iℏ的量子算符,场的正则变量也会发生变换,从而产生相应的产生算符â†和湮灭算符â,满足[â,â†]=1。这使得我们能够解释诸如量子涨落、定态和跃迁等量子特征,并与(非相对论)量子电动力学建立自然联系。