Suppr超能文献

Tsallis统计力学如何、为何以及何时能对自然现象提供精确描述。

How, Why and When Tsallis Statistical Mechanics Provides Precise Descriptions of Natural Phenomena.

作者信息

Robledo Alberto, Velarde Carlos

机构信息

Instituto de Física and Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

出版信息

Entropy (Basel). 2022 Dec 1;24(12):1761. doi: 10.3390/e24121761.

Abstract

The limit of validity of ordinary statistical mechanics and the pertinence of Tsallis statistics beyond it is explained considering the most probable evolution of complex systems processes. To this purpose we employ a dissipative Landau-Ginzburg kinetic equation that becomes a generic one-dimensional nonlinear iteration map for discrete time. We focus on the Renormalization Group (RG) fixed-point maps for the three routes to chaos. We show that all fixed-point maps and their trajectories have analytic closed-form expressions, not only (as known) for the intermittency route to chaos but also for the period-doubling and the quasiperiodic routes. These expressions have the form of -exponentials, while the kinetic equation's Lyapunov function becomes the Tsallis entropy. That is, all processes described by the evolution of the fixed-point trajectories are accompanied by the monotonic progress of the Tsallis entropy. In all cases the action of the fixed-point map attractor imposes a severe impediment to access the system's built-in configurations, leaving only a subset of vanishing measure available. Only those attractors that remain chaotic have ineffective configuration set reduction and display ordinary statistical mechanics. Finally, we provide a brief description of complex system research subjects that illustrates the applicability of our approach.

摘要

考虑复杂系统过程的最概然演化,解释了普通统计力学的有效性极限以及在此极限之外Tsallis统计的相关性。为此,我们采用了一个耗散的朗道 - 金兹堡动力学方程,它在离散时间下成为一个一般的一维非线性迭代映射。我们关注通往混沌的三条路径的重整化群(RG)不动点映射。我们表明,所有不动点映射及其轨迹都有解析的封闭形式表达式,不仅(如已知的)对于通往混沌的间歇性路径,而且对于倍周期和准周期路径也是如此。这些表达式具有 - 指数的形式,而动力学方程的李雅普诺夫函数成为Tsallis熵。也就是说,由不动点轨迹演化所描述的所有过程都伴随着Tsallis熵的单调增加。在所有情况下,不动点映射吸引子的作用对访问系统的内置构型构成了严重阻碍,只留下一个测度消失的子集可用。只有那些保持混沌的吸引子具有无效的构型集缩减,并表现出普通统计力学。最后,我们简要描述了复杂系统研究主题,以说明我们方法的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7926/9777765/8af92a6da5ae/entropy-24-01761-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验