Gioti Maria
Nanotechnology Laboratory LTFN, Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
Materials (Basel). 2022 Dec 19;15(24):9077. doi: 10.3390/ma15249077.
Τhe fabrication of organic light-emitting diodes (OLEDs) from solution involves the major problem of stack integrity, setting the determination of the composition and the characteristics of the resulting interfaces prerequisite for the optimization of the growth processes and the achievement of high devices' performance. In this work, a poly(9,9-dioctylfluorene) (F8) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) blend is used for the emissive layer (EML), poly-3,4-ethylene dioxythiophene; poly-styrene sulfonate (PEDOT:PSS) is used for a hole transport layer (HTL), and Poly(9,9-bis(3'-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluore-ne))dibromide (PFN-Br) for an electron transport layer (ETL) to produce the OLED device. All the layers are developed using the slot-die process, onto indium tin oxide (ITO)-coated polyethylene terephthalate (PET) flexible substrates, whereas Ag cathode was formed by ink-jet printing under ambient conditions. Spectroscopic ellipsometry measurements were performed upon completion of the successive films' growth, in sequential steps, for the multilayer OLED development. Ellipsometry analysis using different models demonstrate the degree of intermixing within the layers and provide information about the interfaces. These interfacial properties are correlated with the emission characteristics as well as the final performance of the OLED devices.
从溶液中制备有机发光二极管(OLED)存在堆叠完整性这一主要问题,这使得确定所得界面的组成和特性成为优化生长过程以及实现高器件性能的前提条件。在这项工作中,聚(9,9 - 二辛基芴)(F8)和聚(9,9 - 二辛基芴 - -alt-苯并噻二唑)(F8BT)共混物用于发光层(EML),聚3,4 - 乙撑二氧噻吩;聚 - 苯乙烯磺酸盐(PEDOT:PSS)用于空穴传输层(HTL),聚(9,9 - 双(3' - (N,N - 二甲基) - N - 乙基铵丙基 - 2,7 - 芴) - alt-2,7 - (9,9 - 二辛基芴))二溴化物(PFN - Br)用于电子传输层(ETL)以制造OLED器件。所有层均使用狭缝模头工艺在涂有氧化铟锡(ITO)的聚对苯二甲酸乙二醇酯(PET)柔性基板上制备,而银阴极是在环境条件下通过喷墨印刷形成的。在多层OLED开发过程中,在连续薄膜生长完成后依次进行光谱椭偏测量。使用不同模型的椭偏分析展示了层内的混合程度,并提供有关界面的信息。这些界面特性与OLED器件的发射特性以及最终性能相关。