Suppr超能文献

用于降低膜阻力的正向渗透膜微观环境变化研究

Study on the Changes in the Microcosmic Environment in Forward Osmosis Membranes to Reduce Membrane Resistance.

作者信息

Zhao Yang, Duan Liang, Liu Xiang, Song Yonghui

机构信息

Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

出版信息

Membranes (Basel). 2022 Nov 29;12(12):1203. doi: 10.3390/membranes12121203.

Abstract

Osmotic microbial fuel cells (OsMFCs) are an emerging wastewater treatment technology in bioelectricity generation, organic substrate removal, and wastewater reclamation. To address this issue, proton-conductive sites were strengthened after using the forward osmosis (FO) membrane by reducing the membrane resistance. The mechanism of improving electricity generation was attributed mainly to the unique characteristics of the membrane material and the water flux characteristics of the FO membrane. In particular, only when the concentration of catholyte was greater than 0.3 M was the membrane resistance the main contributor to the overall internal resistance. Meanwhile, through the simulation of the concentration inside the membrane, the changes in the membrane thickness direction and the phase transition of the internal structure of the membrane from the dry state (0% water content) to the expansion state (>50%water content) were analyzed, which were influenced by the water flux, further explaining the important role of the membrane’s microenvironment in reducing the membrane impedance. This further opens a novel avenue for the use of OsMFCs in practical engineering applications.

摘要

渗透式微生物燃料电池(OsMFCs)是一种新兴的废水处理技术,可用于生物发电、去除有机底物及废水回收利用。为解决这一问题,采用正向渗透(FO)膜后,通过降低膜电阻来强化质子传导位点。发电性能提升的机制主要归因于膜材料的独特特性以及FO膜的水通量特性。特别是,只有当阴极电解液浓度大于0.3 M时,膜电阻才是总内阻的主要贡献因素。同时,通过模拟膜内浓度,分析了膜厚度方向的变化以及膜内部结构从干燥状态(含水量0%)到膨胀状态(含水量>50%)的相变,这些变化受水通量影响,进一步解释了膜微环境在降低膜阻抗方面的重要作用。这进一步为OsMFCs在实际工程应用中开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34cc/9788064/42f5fc81b600/membranes-12-01203-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验